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Abstract

I introduce a novel experimental design tracking subjects’ calculations when valuing

lotteries. The calculations predominantly fall into three groups: expected values,

linear functions of monetary outcomes, or those unmatched to lottery primitives.

Calculations exhibit remarkable within-subject stability alongside substantial between-

subject heterogeneity. Calculations strongly predict valuations: subjects performing

expected values-related calculations exhibit near risk-neutrality, while others’ valuations

on average display extreme unresponsiveness to probability changes. An analysis by

calculation group reveals distinct theoretical mechanisms driving behaviors: adoption

of expected-value calculations is explained by reductions in implementation costs from

the provided calculator, while attribute substitution (Kahneman and Frederick, 2002)

explains the linear functions of monetary outcomes.
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1 Introduction
A common finding in the literature on risk attitudes is that economic agents’ valuations over

risky lotteries are unresponsive to changes in probabilities: When probabilities of the potential

monetary outcomes change, the resulting changes in lottery valuations are generally smaller

in magnitude than the changes in lottery expected values.1 The pattern of unresponsiveness

unifies the fourfold pattern documented in Tversky and Kahneman (1992):2 risk aversion for

gains of high probability and losses of low probability; risk seeking for gains of low probability

and losses of high probability. The unresponsiveness is also a leading example of the broader

theme of behavioral attenuation that has been observed across multiple decision-making

domains (Enke et al., 2024).

The literature studying unresponsiveness has mainly focused on “as-if” models that capture

this phenomenon through descriptive parameters but do not aim to describe the actual decision-

making processes underlying the valuations.3 For example, commonly interpreted as an “as-if”

model, prospect theory accounts for unresponsiveness through the relatively flat region in the

mid-range probabilities of the inverse-S-shaped probability weighting function (e.g, Tversky

and Kahneman, 1992, Gonzalez and Wu, 1999). While such models successfully describe

observed choice patterns, understanding the underlying decision-making processes that lead to

unresponsive lottery valuations represents a crucial next step. The decision-making processes

shed light on the cause of unresponsiveness, which goes beyond the descriptive fit of the

“as-if” models, and have important implications for both theory and applications.

In this study, I focus on a specific aspect of the decision-making processes: the calcula-

tions performed when valuing lotteries. To identify these calculations, I conduct an online

experiment in which I provide subjects with a calculator on the experimental interface when

they value lotteries, and track the calculations the subjects perform with the calculator (the

calculator design). These calculations provide a unique window into the processes by which
1Strictly speaking, unresponsiveness may disappear under extreme probability values, for example if the

probability changes from 0.99 to 0.999. However, this paper restricts attention to probability values that are
bounded away from zero and one (between 8% and 92%).

2To see how unresponsiveness unifies the fourfold pattern, see Section 3, and also Blavatskyy (2007).
3Notable exceptions include Payne, Bettman and Johnson (1988), Arieli, Ben-Ami and Rubinstein (2011),

Pachur et al. (2013, 2018), Harrison and Swarthout (2019), Alós-Ferrer, Jaudas and Ritschel (2021), and
Arrieta and Nielsen (2023).
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lottery valuations are generated – both the deliberately-chosen computational procedures

and the more automatic heuristics. Further, the data allow me to classify subjects by the cal-

culations they use, and ultimately, to compare the observed calculations with the predictions

of behavioral theories of decisions under risk.

The lotteries included in this study are binary-outcome lotteries that pay $26 or lose $26

with probability p ∈ {8%, 25%, 75%, 92%}, and $0 otherwise. In addition to the main treat-

ment that implements the calculator design (Calc), I also implement another within-subject

treatment that drops the calculator from the experimental interface (NoCalc). Moreover,

using the same set of subjects, I elicit valuations of the deterministic mirrors of each lottery

(Oprea, 2024b), under both NoCalc and Calc treatments. For each lottery, its deterministic

mirror is presented in a similar, disaggregated form as the lottery – a sequence of monetary

outcomes and their weights – but pays out the corresponding lottery’s expected value with

certainty. The mirrors preserve some aspects of the lotteries (the need to integrate various

outcomes and probabilities together when making a decision) while removing risk and its

resulting unknown risk preferences. I study mirrors to understand how subjects make decisions

under a problem closely related to the lottery tasks but has an unambiguous correct answer,

with the goal of examining whether subjects’ calculations and mistakes in the mirror tasks

are related to how they approach the lottery tasks.

The lottery valuations from the Calc treatment reproduce the well-documented unrespon-

siveness: when the probability of being paid or suffering a loss changes, the resulting changes

in average valuation are smaller than those of the expected value. Comparing the Calc and

NoCalc treatments, the average subject is more responsive in the Calc treatment, but only by

a small magnitude. Echoing Oprea (2024b), unresponsiveness also appears in the valuations

of deterministic mirrors.

Next, I analyze the calculations performed by subjects. My data consist of sequences

of numerical expressions that the subjects calculate. This novel data present several key

challenges. First, the calculation data only captures the part of subjects’ decision-making

processes that is based on explicit calculation rules, as opposed to process-opaque decision-

making. Second, even when the decision-making processes are based on explicit calculation

rules, for them to be captured in the data, the subjects have to actually perform the explicit
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calculation rules in the calculator, not in their minds. I refer to these two challenges as

the incomplete record limitation of the data. Given this limitation, my analysis focuses

on extracting meaningful insights from the calculations that subjects do choose to perform

explicitly. While I cannot recover complete decision-making processes when subjects rely

primarily on process-opaque decision-making or mental calculations, the data still provide

valuable information about the explicit computational strategies subjects employ when they

do engage with the calculator. Finally, the calculator inputs are high-dimensional objects

requiring transformation into summary features for quantitative analysis, and the features

constructed capture some aspects of the calculations while inevitably missing others.

Using the calculation data, I first address the descriptive question: what do subjects

calculate when they determine their lottery valuations? Subjects predominantly employ one

of three main calculation groups (ordered by frequency): (1) calculations related to expected

values (EV); (2) calculations that cannot be matched with any task primitives (monetary

outcomes and probabilities); (3) calculations that are linear functions of only the monetary

outcomes. Critically, individual subjects typically commit to one calculation group rather

than mixing calculation groups within a valuation task.

Moreover, the calculations exhibit within-subject stability across tasks – a fixed subject

generally uses similar calculations across different tasks. This within-subject stability extends

beyond lottery tasks: for a majority of subjects, the calculations employed for lottery tasks

are similar to those employed for mirror tasks. This observation suggests that their underlying

decision-making processes for valuing lotteries and mirrors share some similarity.

Given the within-subject stability of calculations, I categorize subjects based on their

calculations in lottery tasks. This yields five subject types: three primary types that directly

correspond to the three main calculation groups – (1) the EV type, (2) the number type, and

(3) the linear money type – plus two minor types. The analysis proceeds in two steps. First,

I examine how subject types relate to valuations across both treatments, and in both lottery

and mirror tasks. Second, for each type, I identify theoretical mechanisms that explain the

joint patterns of calculations and valuations. I present this analysis by examining each type

in turn.
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EV Type The EV-type subjects (38.1% of all subjects), characterized by their use of

calculations related to the expected values, tend to submit highly responsive lottery valuations

and appear close to risk neutral in the Calc treatment. To quantify this responsiveness, I

estimate separate regressions for each subject using their lottery valuation data, where I

regress their valuations of the lotteries on the expected values of these lotteries. I then use each

subject’s estimated slope on expected value as an individual-level measure of responsiveness.

The analysis reveals that the average responsiveness of the EV-type subjects is 0.85. In other

words, when the expected value of the lottery increases by $1, on average the valuation of

the lottery increases by $0.85.

In the mirror tasks of the Calc treatment, the EV-type subjects are also highly responsive

(average = 0.82). In the lottery tasks of the NoCalc treatment, the EV-type subjects are

much less responsive than in the Calc treatment, but are still moderately responsive (average

= 0.56). Moreover, when given an incentivized opportunity to reconcile their inconsistent

choices across the two treatments (the reconciliation stage, Nielsen and Rehbeck, 2022),

these EV-type subjects generally prefer their responsive valuations in the Calc treatment

over their unresponsive valuations in the NoCalc treatment, which suggests that EV-type

subjects consider their responsive, near-risk-neutral valuations in the Calc treatment to more

accurately reflect their welfare-relevant risk preferences than their moderately responsive

valuations in the NoCalc treatment.

Next, I examine the theoretical mechanisms that can explain their unresponsiveness in

the NoCalc treatment, which resembles experiments in the previous literature that measure

risk attitudes. Their dramatic increase in responsiveness from the NoCalc to the Calc

treatment is consistent with the theory of implementation costs – costs of implementing

procedures despite knowledge of optimal approaches. Although these subjects exhibit near-

risk-neutral preferences, as evident by their choices in the reconciliation stage, implementing

the computational procedure that optimizes against this preference – namely, calculating

expected values – involves implementation costs. When the implementation costs are relatively

high due to the absence of a calculator in the NoCalc treatment, these subjects resort to less

costly decision-making processes that generate unresponsive valuations. In contrast, the Calc

treatment lowers the implementation costs of their optimal procedure due to the presence
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of a calculator, and as a result, these EV-type subjects choose to implement their optimal

procedure, and exhibit high responsiveness and near risk-neutrality.

Number Type The number type subjects (36.6% of all subjects), characterized by their

use of calculations that cannot be matched with any task primitives, tend to submit highly

unresponsive lottery valuations (average = 0.20) and appear well-described by the fourfold

pattern of risk attitudes (Tversky and Kahneman, 1992) in the Calc treatment. These subjects

are also highly unresponsive in both the mirror tasks of the Calc treatment (average = 0.21)

and the lottery tasks of the NoCalc treatment (average = 0.25). The valuations of the number

type subjects are statistically indistinguishable between the NoCalc and Calc treatments.

The calculator design provides limited insights into why the number type subjects exhibit

unresponsiveness, since their calculations do not reveal much about how the subjects map

the task primitives to their valuations. However, what I do observe is that these subjects

also largely use the same group of calculations – those that cannot be matched with any

task primitives – in mirror tasks, when objectively correct answers are available that can be

reached by simply calculating the expected values. Perhaps a bit speculatively, this suggests

that the unresponsiveness of the number type in lottery tasks is not solely driven by the fact

that lotteries are risky, but partly related to the fact that lotteries are disaggregated objects.

Linear Money Type Despite employing a different calculation approach – linear functions

of monetary outcomes – linear money type subjects (16.8% of all subjects) also exhibit high

unresponsiveness across all treatments and across lottery and mirror tasks (lottery Calc: 0.26,

mirror Calc: 0.25, lottery NoCalc: 0.25), suggesting that their explicit calculations do not

translate into more responsive decision-making.

I examine whether two specific theories – probability weighting and attribute substitution

– can potentially explain the joint patterns of their calculations and valuations. I begin by

evaluating probability weighting as a potential explanation, since if subjects are literally

implementing probability weighting to determine valuations, their calculations can be shown

to appear as a linear function of monetary outcomes in the data. To test this possibility, I

recover the probability weighting function implied by calculations, contrasting with traditional

approaches that infer probability weights from valuations. The recovered probability weighting
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function shows an extremely flat slope (0.093) with respect to the actual probability, indicating

that these subjects apply similar weights across widely different probabilities. The extreme

degree of unresponsiveness is difficult to reconcile with probability weighting as a literal

account.

Instead, the emergence of linear money type subjects can be explained by the attribute

substitution theory (Kahneman and Frederick, 2002), where subjects generate their valuations

mainly based on the potential monetary outcomes of the lotteries. This is because their

genuine valuations may be relatively inaccessible, while potential monetary outcomes are

semantically related to the valuations (since they both involve monetary amounts) and are

readily accessible, and thus can serve as a substitute for the valuations. The theory explains

the observed unresponsiveness to probabilities through the neglect of probabilities in the

attribute substitution process. This theory can also explain an important empirical pattern

documented across the data from multiple studies but has not attracted sufficient attention:

lottery valuations are substantially more responsive to changes in monetary outcomes than

to changes in probabilities. Finally, the most prevalent form of attribute substitution directly

observed in the calculation data generates a novel testable prediction: responsiveness to a

monetary outcome should decrease as its probability increases. This prediction is confirmed

with Enke and Graeber’s (2023) data.

Summarizing the type-by-type analysis above, the calculation data reveal three primary

subject types: the EV type, the number type, and the linear money type. Examining the

theoretical mechanisms underlying unresponsiveness reveals distinct mechanisms by type.

The unresponsiveness exhibited by EV-type subjects in the NoCalc treatment predominantly

reflects implementation costs. In contrast, the calculations and unresponsive valuations of

linear money-type subjects provide strong evidence of attribute substitution, where subjects

substitute the readily accessible monetary outcomes for the more complex lottery valuation

task, thereby neglecting probabilities. For number-type subjects, the underlying mechanism

remains less clear. Among the remaining subjects in the minor types, I find evidence that

many suffer from incomplete understanding of the lottery valuation task.

The rest of this paper is organized as follows. Section 2 describes my experimental design.

Section 3 describes subjects’ valuations. Section 4 outlines the methodology of analyzing the
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calculations, and provides descriptions of the calculations arising in my experimental data.

Section 5 links the calculations to the valuations, and Section 6 discusses the implications of

the calculations over the theoretical mechanisms underlying unresponsive lottery valuations.

Finally, Section 7 discusses how the current study relates to the literature.

2 Experimental Design

2.1 Lotteries and Their Deterministic Mirrors

In the experiment, I elicit the valuations (certainty equivalents) for a set of 8 distinct lotteries

using the Becker-Degroot-Marschak (BDM) mechanism (Becker, Degroot and Marschak, 1964).

I focus on simple, two-outcome lotteries ($X, p; 0) ($X is paid with probability p, and $0 is

paid with the remaining probability). Two groups of lotteries are included. In the first group,

“gain lotteries,” X = 26 and the subject gains $26 with probabilities p ∈ {0.08, 0.25, 0.75, 0.92}.

These lotteries are referred to as G8, G25, G75, and G92, respectively. In “loss lotteries,”

X = −26 and the subject loses $26 with probabilities p ∈ {0.08, 0.25, 0.75, 0.92}. These

lotteries are referred to as L8, L25, L75, and L92, respectively. To measure valuation

inconsistency and its relationship with valuation patterns, the lottery G25 is repeated, leading

to a total of 9 lottery tasks.

The experimental instructions depict the gain (loss) lottery Gn (Ln) as 100 boxes, of

which n contain $26 (-$26) and the rest contain $0. To determine the payment from the

lottery, one of these boxes will be randomly selected, and the amount of money in the selected

box will be paid. Following Oprea (2024b), I elicit the valuations of the deterministic mirror

of each lottery, with the mirror of lottery G25 again repeated. A deterministic mirror is

presented in a similar format as its corresponding lottery, but features a modified payoff rule

that eliminates risk and pays the expected value of its corresponding lottery with certainty.

Specifically, a mirror is also depicted as 100 boxes, each containing some amount of money.

However, instead of paying out a randomly selected box like a lottery does, a mirror pays the

average amount of money across the 100 boxes. I use tuples such as (G8, lottery) and (L25,

mirror) to refer to individual valuation tasks, and use task type to refer to the two different

payoff rules: Lottery and mirror.
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Addressing the concerns raised by Banki et al. (2025) and Wu (2025) over Oprea’s (2024b)

instructions, which I adopt extensively, I replicate all the analysis in this paper with two

exercises. First, I replicate the main experiment using an entirely new set of instructions that

combine Wu’s (2025) explanations of lotteries and mirrors, and Healy’s (2020) explanations

of the BDM mechanism. Second, I use the data from the main experiment, but restrict the

sample to those subjects who perfectly answer all comprehension questions and are unlikely

to be confused about the experimental design. The vast majority of the results in this paper

are robust in both exercises. See Appendix D for a more thorough discussion.

2.2 Experimental Treatments

The experiment includes two within-subject treatments: NoCalc and Calc.

NoCalc Treatment In the NoCalc treatment, the subject values the 9 lotteries and mirrors

by typing their valuations into a text box. The subject is given $30 as their initial money for

them to bid under the BDM mechanism, and their gains and losses are calculated on top of

the initial money. The valuations are restricted to be between $0 and $26 for tasks involving

gains, and between -$26 and $0 for tasks involving losses.

Calc Treatment In the Calc treatment, the subject values the same 9 lotteries and mirrors.

The key innovation is the inclusion of a calculator in the experimental interface, whose input I

can track and record. The calculator can perform basic arithmetic operations. Numbers and

operations can be typed into the calculator by either clicking the buttons on the graphical

interface or using a keyboard. The calculator can store multiple calculations. All expressions

calculated are displayed in the calculator as a table, in the order of being performed. Each

line in the table consists of a Calculation column, where the expression calculated is displayed,

and a Result column, where the calculated result appears. The calculator refreshes after each

task, clearing all previous expressions and results. A screenshot of the experimental interface

with example calculations performed can be seen in Figure 1.

As in the NoCalc treatment, a text box is provided asking for the valuation of the subject

(seen on the left of Figure 1). However, the text box is grayed out, and the subject is not

able to directly type numbers into the text box. Instead, to submit a valuation, the subject

needs to make it appear in the Result column of the last line of the calculator. Then, the
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Figure 1: The experimental interface in the Calc treatment with example calculations
performed

subject would click the Fill button (shown in the bottom-left of the calculator interface in

Figure 1) to fill the number into the grayed-out text box. This submission process is designed

to balance two goals. On the one hand, it gently encourages subjects to use the calculator.

On the other hand, it minimizes potential distortions of behaviors. Particularly, the design

accommodates subjects who wish to submit valuations without performing calculations in the

calculator. Such a subject can simply type their intended valuation as a single number in the

calculator, and then “calculate” this number, and finally fill the number into the text box.

The subject does not receive any specific instructions as to how the calculator may help

them in the task, and they are free to use the calculator to perform whatever calculations

they deem useful. The payment of the subject does not depend on what calculations the

subject performs in the calculator, and only depends on the valuations that they submit.

Timeline The experiment starts with the NoCalc treatment. The NoCalc treatment consists

of two blocks – one containing all lottery tasks and the other containing all mirror tasks.

The order of blocks and the order of tasks within each block are randomized at the subject
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level. The subject is not informed about the second block while completing the first block,

but receives instructions about the new task type before starting the second block.

After finishing the NoCalc treatment, the subject enters the Calc treatment. Within the

Calc treatment, there are again two blocks for lottery tasks and mirror tasks, respectively.

The order of lottery and mirror blocks in the Calc treatment is the same as that in the

NoCalc treatment. Figure 2 shows the diagram for the main experimental timeline.

Before each of the four blocks, the subject is required to answer four comprehension

questions. These comprehension questions serve the purpose of training the subjects on the

payoff rules in lottery tasks and mirror tasks, and also as a reminder that the payoff rule has

changed from the one used previously. The four comprehension questions are shown on the

same screen. The subject has unlimited opportunities to answer the questions, but they have

to answer all four questions correctly at a single trial in order to proceed.

NoCalc Treatment

Block 1
(9 tasks)

Block 2
(9 tasks)

Lottery/Mirror Mirror/Lottery

Calc Treatment

Block 1
(9 tasks)

Block 2
(9 tasks)

Same order as NoCalc

Instructions
for Calc

Treatment

Figure 2: Main Experimental Timeline

After the Calc treatment, following Nielsen and Rehbeck (2022), the subject is asked to

reconcile their potentially different valuations for the same task between NoCalc and Calc

treatments. This exercise aims to reveal which valuations better reflect subjects’ welfare-

relevant risk preferences. Finally, the subject responds to a few additional questions, including

an incentivized choice among four deterministic mirrors.

The complete experimental instructions can be found in Appendix G.

2.3 Implementation Details

The experiment was conducted on Prolific in January 2025. A total of 202 subjects completed

the experiment. The experiment was programmed using OTree (Chen, Schonger and Wickens,

2016). Each subject was paid a participation fee of $7 for completing the experiment. With

a 20% chance, a subject was also paid the outcome of a randomly chosen task. The median
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subject spent around 50 minutes on the experiment, and the average total earnings from the

experiment were $13.19.

3 Valuations of Lotteries
This section focuses on the valuations of lotteries and mirrors submitted by the subjects.

Analysis of the calculations is left to the following sections.

The four panels of Figure 3 show the average absolute valuations for all lotteries and

mirrors in both NoCalc and Calc treatments, pooling across all subjects. First, the lottery

valuations exhibit substantial unresponsiveness – when the probabilities of lotteries change,

the lottery valuations change by a smaller magnitude than the expected values. This pattern

of unresponsiveness unifies the classic fourfold pattern documented in Tversky and Kahneman

(1992). To see this, note that unresponsiveness usually implies a pull-to-the-center effect in

the valuations. When the probability of the non-zero outcome is small, the absolute valuations

are greater than the absolute expected values for both gain and loss lotteries, indicating

patterns conventionally interpreted as risk-loving preferences for small probability gains, and

risk-averse preferences for small probability losses. In contrast, when the probability of the

non-zero outcome is large, the relationship between the absolute valuations and the expected

values reverses. As a result, the average subject appears to have risk-averse preferences for

large probability gains, and risk-loving preferences for large probability losses.
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Figure 3: Average valuation of each lottery and their deterministic mirror. 95% confidence
intervals are shown with the bars, and the 45-degree line is shown as a dashed line.
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Second, replicating Oprea (2024b), unresponsiveness also appears in mirror tasks, where

an unambiguous correct answer exists that should have entirely eliminated unresponsiveness.

Third, the absolute valuations are similar for gain and loss lotteries with the same

probability of non-zero outcome, for example G8 and L8.4 To simplify the analysis, from

now on, I treat pairs of gain and loss lotteries with the same probability of non-zero outcome

(such as G8 and L8) as the same lottery. That is to say, for a loss lottery, I take absolute

values for any characteristics related to it, such as valuation, expected value, and monetary

outcomes. In the following text, I will simply use the terminology valuation to refer to the

absolute valuation, and similarly for other characteristics. Analyzing gain and loss tasks

separately does not meaningfully alter any of the results in this paper.

Finally, I examine whether providing access to a calculator affects subjects’ lottery and

mirror valuations. Figure 3 shows that providing a calculator to subjects does not eliminate

the unresponsiveness in their lottery and mirror valuations. However, it is also clear from the

slopes shown in the graph that valuations in Calc are somewhat more responsive than those

in NoCalc. I will return to the comparison between NoCalc and Calc in Section 5.3 with a

more granular analysis focused on subsets of subjects.

4 Descriptions of Calculations
This section first outlines the methodology for analyzing the calculator input data, and then

provides descriptive statistics of the data.

4.1 The Data: Calculator Inputs

Since this paper analyzes a novel type of data – the sequence of calculations performed by

subjects using the calculator – I first provide a brief overview of the structure of the data.

For each task completed by each subject in the Calc treatment (referred to as a round),

the computer collects two main pieces of data. First, it collects the subject’s valuation of this

lottery or mirror. Second, it also collects the calculator input of the subject. The calculator

input is a sequence of numerical expressions typed into the calculator by the subject and

evaluated by the calculator. The order of numerical expressions in the calculator input reflects
4This pattern repeatedly appears in experiments measuring lottery valuations. See, for example, Tversky

and Kahneman (1992, Table 3, page 307) and l’Haridon and Vieider (2019, Figure 2, page 196).

13



the order by which the subject performs them.

Table 1 visualizes a hypothetical observation of calculator input, where a subject faces

the task (G75, Lottery). This calculator input reveals that, when facing the task, the subject

first typed 75 × 26/100 + 25 × 0/100 into the calculator and evaluated it, and then did the

same for 19.5 − 4.5. Since the experimental design requires the valuation to appear in the

Result column of the last line of the calculator before it is submitted (See descriptions for

the Calc treatment in Section 2.2), the result in the last line, 15, is also the valuation.

Line Numerical Expression Result

1 75 × 26/100 + 25 × 0/100 19.5

2 19.5 − 4.5 15

Table 1: An example calculator input by a hypothetical subject facing the task (G75, Lottery)

Analyzing the calculator input data involves several important challenges. Most critically,

the calculator inputs only provide an incomplete record of subjects’ decision-making processes

when completing valuation tasks. Specifically, the calculator data may fail to capture the

complete mapping from task primitives to final valuations for two reasons. First, subjects may

rely on process-opaque decision-making that cannot be decomposed into explicit mathematical

operations or explicit computational rules. Second, even when the decision-making processes

are based on explicit calculation rules, subjects may perform these calculations mentally

without entering them into the calculator, making these computational steps invisible in the

data. Given these limitations, I do not claim to recover the complete decision-making process

for every subject. However, when subjects do perform calculations using the calculator, this

data provide valuable insights into the explicit computational approaches they employ when

determining their lottery valuations. Moreover, the calculator inputs are high-dimensional

objects that require transformation into summary features for quantitative analysis. While

any transformation will inevitably lose some information, the features we construct are

designed to capture capture key aspects of the calculations. To rigorously define the objects

and describe the algorithms involved in the analysis, a formal structure of mathematical

expressions is needed. An introduction to the formal structure and rigorous descriptions of

the algorithms used in this section are provided in Appendix F. In what follows, I rely on
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examples to illustrate the definitions and algorithms.

4.2 Recovering Symbolic Expressions

While subjects can only calculate numerical expressions in the calculator, their corresponding

symbolic expressions (in terms of the task primitives) can be recovered to shed light on the

calculation strategies by which subjects reach their valuations. Four primitives describe

each task: b1 denotes the number of boxes with non-zero amount of money, m1 denotes the

(absolute) amount in each of these boxes, b2 denotes the number of boxes with zero amount,

and m2 denotes the amount in each of these boxes. For example, when facing the task (G75,

Lottery), where these primitives take values b1 = 75, b2 = 25, m1 = 26, m2 = 0, a subject

who calculates 75 × 26 is actually computing b1 × m1. This symbolic expression reveals how

subjects utilize task primitives to construct their valuations and facilitates comparisons across

tasks with different primitives.

To recover the symbolic expressions, I use a simple match-and-replace algorithm. There

are three key features of this algorithm. First, the algorithm processes the calculator input

sequentially, from the first to the last line. Second, the algorithm matches the numbers in the

numerical expressions against the task primitives. A number that matches a task primitive

is replaced with the corresponding symbol. Third, taking into consideration the sequential

nature of how subjects perform calculations, starting from the second line, the algorithm also

matches the numbers against the set of previous results. A number that matches a previous

line result is replaced with the recovered symbolic expression of that line. Any number that

does not match any primitive or previous result remains as the same number.

Here, the algorithm is illustrated using the example in Table 1. As the first step, the

algorithm matches the numbers in the numerical expression in line 1 against the set of

primitives for the task (G75, Lottery): {(b1, 75), (b2, 25), (m1, 26), (m2, 0)}.5 Replacing the

matched numbers with their corresponding symbols leads to the symbolic expression of line 1

– b1 × m1/100 + b2 × m2/100 – where the number 100 doesn’t find a match in the primitives
5When implementing the algorithm, the set of primitives that the algorithm matches against is expanded

to include common calculation shortcuts that subjects may use. For example, in G75, the primitive set also
includes (b1 × m1/100, 19.5) to capture the scenario where a subject calculates the expected value of the
lottery in their mind, before using the result of this mental calculation directly in the calculator. For a list of
matched shortcuts, see Appendix F.
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and is left intact. Next, the algorithm moves to line 2. The number 19.5 does not match any

task primitive, but it matches the result of line 1. Thus, the algorithm replaces the number

19.5 with the recovered line 1 symbolic expression (b1 × m1/100 + b2 × m2/100). In this way,

the algorithm recovers the line 2 symbolic expression – b1 × m1/100 + b2 × m2/100 − 4.5. The

results are shown in Table 2.
Line Numerical Expression Result Symbolic Expression

1 75 × 26/100 + 25 × 0/100 19.5 b1 × m1/100 + b2 × m2/100
2 19.5 − 4.5 15 b1 × m1/100 + b2 × m2/100 − 4.5

Table 2: Symbolic expressions of the example in Table 1, where a hypothetical subject faces
the task (G75, Lottery).

The incomplete record limitation of the calculator input data can be illustrated by

comparing the two examples Table 2 and Table 3. In line 1, the subject in Table 3 performs

the same expected value calculation as Table 2. However, suppose that after computing the

expected value, instead of explicitly subtracting of 4.5 from the expected value as in Table 2,

the subject performs this fairly simple calculation in their head, and types 15 directly into

the second line and submits this as their valuation. Now, in Table 3, the number 15 in line

2 cannot be matched to any task primitives or previous results. As a result, the symbolic

expression is simply the constant function 15, and the connection between the number 15

and the task primitives cannot be seen from this recovered symbolic expression.
Line Numerical Expression Result Symbolic Expression

1 75 × 26/100 + 25 × 0/100 19.5 b1 × m1/100 + b2 × m2/100
2 15 15 15

Table 3: An example calculator input by a hypothetical subject facing the task (G75, Lottery).

4.3 Procedures and Base Terms

To address the high-dimensionality of the calculator input data, I develop two complementary

features of calculator inputs to facilitate the analysis. Both features rely on the recovered

symbolic expressions, but they differ in terms of their focus. First, I construct the procedure

to capture how the subject maps task primitives to their final valuation. Second, I construct

the set of base terms to summarize all functional forms of task primitives a subject calculates

in a round.
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Procedures For a round, its procedure is defined as the recovered symbolic expression of

the last line of the calculator input.6 Since the experimental design requires the valuation

to appear in the Result column of the last line of the calculator before it is submitted, the

procedure is the function mapping task primitives to the final valuation. For example, in the

calculator input shown in Table 2, its procedure is b1 × m1/100 + b2 × m2/100 − 4.5.

Ideally, the definition of procedures attempts to capture the function that the subject uses

to map the primitives of the task to their valuations. However, the example illustrated in

Table 3 has shown a potential pitfall of this attempt. In Table 3, the procedure itself, being

the constant function 15, is silent on the fact that the subject also calculates the expected

value of the lottery, and may have used the calculated expected value in a way that is not

captured by the calculator input data to construct their valuation. To address this problem,

I introduce base terms to complement procedures in the analysis of calculator inputs.

Base Terms and Base Term Sets I decompose a calculator input into its base terms: All

terms that appear in the symbolic expressions of the calculator input, with their numerical

factors dropped. The process of identifying base terms involves three steps:

1. First, I break down each symbolic expression in the calculator input into terms.7 For

example, in the symbolic expression b1 × m1/100 + b2 × m2/100, there are two terms:

b1 × m1/100 and b2 × m2/100.

2. Next, I generate the base term of each term by dropping all its numerical factors. For

example, starting from the term b1 × m1/100, dropping the numerical factor 1/100 from

it generates its base term b1 × m1. If a term contains only numerical factors and no

symbolic factors (Examples: (i) 4; (ii) 4 × 2), its base term is defined as C.
6More precisely, the procedure is the function of task primitives represented by the recovered symbolic

expression of the last line of the calculator input. This lengthy definition emphasizes the fact that a procedure
is a function, not an expression. In other words, two expressions with different syntaxes but representing the
same function, for example, 2 × b1 × m1/200 and (b1 × m1)/100, should be viewed as the same procedure.

7The concept of terms, and by extension base terms, suffers from an indeterminacy problem with
syntactically different but mathematically equivalent expressions. For example, the mathematically equivalent
expressions b1 ×m1/100 + b2 ×m2/100 and (b1 ×m1 + b2 ×m2)/100 lead to different base terms. To solve this
problem, I first expand all the products in all expressions by applying the distributive law of multiplication
(a × (b + c) = a × b + a × c), wherever applicable. This way, I transform the original symbolic expression into
its distributed form expression. The base term set of a calculator input is defined as the collection of all base
terms that appear in any of its distributed form expressions. Using distributed form expressions solves the
aforementioned indeterminacy problem and generates the same set of base terms for b1 ×m1/100+b2 ×m2/100
and (b1 × m1 + b2 × m2)/100.
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3. Finally, I define the base term set of a calculator input as the collection of all base

terms that appear in any of its symbolic expressions.

This definition is illustrated again using the example in Table 1. In the symbolic expression

of line 1 (b1 × m1/100 + b2 × m2/100), two base terms appear: b1 × m1 and b2 × m2, whereas

in the symbolic expression of line 2 (b1 × m1/100 + b2 × m2/100 − 4.5), a total of three base

terms appear: C in addition to b1 × m1 and b2 × m2. Therefore, the base term set of this

example calculator input is {b1 × m1, b2 × m2, C}.

The base terms provide a summary of the functional forms of all calculations, while the

procedures capture the exact functional form of the final valuation. These two features both

reduce the dimension of the calculator input, and in the meantime complement each other.

First, procedures complement base terms by showing how the base terms are combined to

form the valuations. Second, since the procedures lose any information over the calculations

that cannot be directly connected to the valuation, base terms complement procedures

by preserving the information in these calculations. For instance, though the examples in

Table 2 and Table 3 generate different procedures, they generate the same base term set

{b1 × m1, b2 × m2, C}, which emphasizes the similarity of these two calculator inputs.

Procedure Groups and Base Term Groups For parsimony and interpretability, I

categorize base terms into five groups, listed in Table 4. Beyond their intuitive appeal, this

categorization is also supported by fitting an unsupervised machine learning classification

model using the calculator inputs.8 Parallel to the base term groups, I also classify all

procedures into five groups.
8I use Latent Dirichlet Allocation (LDA, Blei, Ng and Jordan, 2003) to find latent topics from calculator

inputs, and group base terms by the topic that they are strongly associated with. The five groups of base
terms listed in the main text are each associated with an individual topic. This exercise draws an analogy
between calculator inputs and text documents in natural language. LDA is a popular unsupervised technique
in natural language processing to find latent semantic topics from text documents. Details of this unsupervised
machine learning approach can be found in Appendix B.
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Group Base Terms Procedures

Expected value b1 × m1, b2 × m2 b1 × m1/100 or (b1 × m1 + b2 × m2)/100

Number C Constant functions (e.g., 5)

Linear box b1, b2 θ0 + θ1 × b1 + θ2 × b2, where θ0, θ1, θ2 are constants

Linear money m1, m2 γ0 + γ1 × m1 + γ2 × m2, where γ0, γ1, γ2 are constants

Non-linear Anything else Anything else

Table 4: Classification of base terms and procedures into five groups

4.4 Descriptions of Calculator Inputs

Now, I provide descriptions of the calculator inputs appearing in the experiment. First, in

75% of all rounds, some explicit calculations are performed, while in the remaining 25% of all

rounds, no explicit calculation is performed at all, and the subjects simply type a number

into the calculator and submit this number.

What calculations do subjects perform when they value lotteries and mirrors? Particularly,

besides the calculations of the expected value, does there exist any other functional form of

task primitives that is repeatedly calculated by different subjects? To answer this question,

in Panel A of Table 5, I list all non-number procedures that appear in more than 0.5% of all

rounds, in addition to their shares in the two task types separately. Except for the expected

value procedures and a few linear money procedures, other non-number procedures appear in

only a tiny share of rounds.

Looking at the base terms paints the same picture. Across the 3636 Calc rounds, only 44

distinct base terms appear, and only 8 of these appear in more than 1% of rounds (listed

in Panel A of Table 6). These most frequently used base terms often have interpretable

functional forms: the components of expected value calculations (b1 × m1 and b2 × m2) and

the linear terms m1, m2, b1, b2. The number term C, which represents unmatched number

terms in the calculations, appears in 38.0% (36.9%) of lottery (mirror) rounds.9 All unlisted

base terms together appear in only 5.9% (6.7%) of lottery (mirror) rounds. In other words,
9Most of these number terms consist of only one number factor, such as 4, as opposed to a few number

factors multiplied together, such as 4 × 2. More specifically, if I only look at the frequency of terms with only
one number factor, they appear in 28.6% of lottery rounds and 27.9% of mirror rounds.
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Panel A: Procedures Panel B: Procedure Groups
lottery mirror lottery mirror

b1 × m1/100 29.0% 32.9% expected value 34.7% 37.0%
m1 11.3% 6.6% number 31.9% 34.8%
b1 × m1/100 + b2 × m2/100 5.7% 4.1% linear money 20.6% 14.8%
m1/2 0.8% 2.8% nonlinear 9.0% 9.4%
m2 2.1% 0.9% linear box 3.7% 4.1%
b2 × m1/100 1.5% 1.0%
m1/4 1.0% 0.4%
b1 × m1/200 0.4% 1.0%
m1 + m2 0.8% 0.6%
3 × b1/10 0.7% 0.6%
100/b1 0.6% 0.7%

Table 5: Frequencies of procedures and procedure groups. Panel A: Shares of all non-number
procedures that appear in more than 0.5% of all rounds (lottery and mirror). Panel B: Shares
of all five procedure groups (see the text for the definition).

even when given the flexibility to perform any calculation, subjects overwhelmingly restrict

themselves to expected value or linear functions of task primitives, while other functional

forms are only used sporadically. In addition, in 85.0% of rounds, subjects employ base terms

from only a single group, which indicates that subjects typically do not combine multiple base

term groups to construct more complex valuation rules. These results rule out the possibility

that a non-negligible fraction of subjects develops highly complicated non-EV valuation rules

that are explicitly implementable in the calculator.
Panel A: Base Terms Panel B: Base Term Groups

lottery mirror lottery mirror
b1 × m1 40.6% 43.7% expected value 40.7% 43.7%
C 38.0% 36.9% number 38.0% 36.9%
m1 20.1% 18.3% linear money 23.4% 20.5%
b2 × m2 7.0% 6.4% linear box 7.8% 7.3%
b1 6.5% 5.8% nonlinear 7.1% 7.0%
m2 4.9% 3.6%
b2 4.1% 3.4%
b2 × m1 1.9% 1.4%
All others 5.8% 6.4%

Table 6: Fractions of rounds where each base term (group) appears. Panel A: Fractions of all
base terms that appear in more than 1% of all rounds (lottery and mirror). Panel B: The
fractions of all five base term groups (see the text for the definition).
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Result 1. Subjects predominantly employ one of three main groups of calculations when

valuing lotteries: (1) expected value; (2) number; or (3) linear money. These three groups

account for the vast majority of calculations, other calculations are rare, and subjects typically

use a single group of calculations per round.

Moreover, across lottery and mirror tasks, the shares of procedures and base terms are

similar. The finding micro-founds the similar lottery and mirror valuations documented in

Oprea (2024b) and in Section 3 of this paper. Examples of calculator inputs appearing in the

data can be found in Appendix C.

4.5 Within-Subject Stability of Calculator Inputs

Next, I ask the following question: Does the same subject use stable calculations across

tasks? There are two facets of this stability. First, I examine within-task-type stability of

procedures: Does the same subject use the same procedure across tasks within the same task

type? For each combination of subject and task type, I identify the modal procedure: The

most frequently occurring procedure within that subject’s calculator inputs for all rounds

of that task type. I then compute what fraction of that subject’s rounds use their modal

procedure. Taking the median of these fractions across subjects shows that the median

subject uses their modal procedure in 5 out of 9 rounds for both lottery and mirror tasks.

Using exactly the same procedure for multiple tasks requires that every step in the

valuation process is explicitly performed in the calculator. If a subject performs part of their

valuation process implicitly in their mind, their procedures as defined here will differ across

rounds, but the actual valuation processes may still be similar. This argument demonstrates

the value of conducting an additional analysis using the coarser notion of procedure groups,

as opposed to raw procedures. Using the same procedure group in two rounds indicates

a generally similar approach to constructing the valuations.10 An analogous analysis as

what has been done above for procedures reveals that the median subject uses their modal

procedure group in 8 out of 9 rounds for both lottery and mirror tasks. This analysis strongly
10For example, in the extreme case where a subject’s valuation process is fully process-opaque and

indescribable in the calculator, the subject will simply submit a number as their valuation without performing
any calculation in the calculator. In this case, all the subject’s procedures will be in the number group,
indicating that the subject uses a similar (process-opaque) way to approach different tasks, despite the fact
that the procedures are different.
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suggests that the majority of subjects maintain a fairly stable procedure group for a given

task type.

Second, I examine between-task-type stability: Does the same subject use the same

procedure when valuing a lottery and its corresponding mirror? I refer to all lottery-mirror

round pairs where the same subject faces a lottery and its matched mirror as within-subject

pairs. I find that 44.9% of within-subject pairs have identical procedures, while as a benchmark,

the analogous figure for all lottery-mirror round pairs (including pairs across different subjects)

is only 11.2%. Looking at the coarser notion of procedure groups instead of the procedures,

among within-subject pairs, 68.9% have identical procedure groups (benchmark using all

lottery-mirror pairs: 28.0%). The result strongly suggests that subjects typically use similar

approaches to valuing a lottery and its corresponding mirror.11

Although I have focused on the stability of procedures in this section, the analysis using

base terms leads to identical results.

Result 2. The procedures and base term sets are generally stable within-subject either within

lottery tasks, within mirror tasks, or between lottery and mirror tasks.

Moreover, among the within-subject pairs where lottery and mirror procedures do differ,

there is only a weak tendency for subjects to switch from non-EV procedures in lotteries

to EV procedures in mirrors. Appendix Table A.1 shows the joint distribution of lottery

procedure group and mirror procedure group among all within-subject pairs. In 8.0% of all

within-subject pairs, the subjects switch from an EV-group procedure in the mirror task to a

non-EV-group procedure in the lottery task, while in 5.8% of all these pairs, the subjects

switch in the opposite direction. The difference between the frequencies of these two opposite

switch directions is economically small.

5 Linking Calculator Inputs to Valuations
The next question I study is the connection between the calculator inputs and valuations.

Section 5.1 looks at the round-level predictive power of calculator inputs for valuations.
11The between-task-type stability is not entirely driven by the prevalence of the expected value and the

number group procedures. Appendix Table A.1 shows the fractions of within-subject pairs that have identical
procedure groups, conditional on the procedure group in the lottery task. All these conditional fractions are
substantially higher than the benchmark of 28.0%.
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I categorize rounds by the base terms in their calculator inputs, and then examine the

distributions of valuations conditional on employing different base terms. Next, in Section 5.2,

I turn to the subject level and aggregate across rounds. I assign types to subjects based on

their calculator inputs in lottery tasks, and analyze the link between the types of subjects

and their responsiveness in the Calc treatment. Section 5.3 examines the link between the

types of subjects and their responsiveness in the NoCalc treatment.

5.1 Round-Level Calculator Inputs and Valuations

Does the calculator input in a round predict the valuation in the same round? Figure 4 shows

the cumulative distribution functions (CDF) of the valuations in lottery tasks in the Calc

treatment, where each panel plots the CDF conditional on employing a group of base terms.

When multiple groups of base terms are used within a single round, the valuation from that

round appears in the CDF for each applicable group.
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Figure 4: Distributions of lottery valuations in the Calc treatment, conditional on employing
each group of base terms.

The data reveal that when subjects employ EV terms in a round, their resulting valuations

tend to be risk neutral. In principle, even when EV terms are employed, valuations could

still deviate from expected values through two mechanisms. First, since numerical factors are

dropped when constructing base terms, a subject who calculates, for example, 0.9×b1×m1/100

would produce a valuation that differs from the expected value. Second, since Figure 4 shows

23



data conditional only on the presence of EV terms, subjects may simultaneously employ

additional non-EV terms in their calculations. For instance, a subject might calculate

b1 × m1/100 − 1, and this round would still be included in the EV terms panel of Figure 4

despite the subtraction of a constant. Nevertheless, the data show that when EV terms are

employed, valuations remain predominantly clustered around the expected value.12

Result 3. At the round-level, EV terms are predictive of lottery valuations that are responsive

and are tightly concentrated around the expected value. In contrast, non-EV terms are

predictive of valuations that are unresponsive and highly dispersed.

Although the previous analysis has focused on lotteries, quantitatively similar results

also appear for mirrors: EV terms in a mirror round predict responsive and concentrated

mirror valuations, while non-EV terms predict the opposite. Appendix Figure A.3 replicates

Figure 4 using the mirror tasks.

5.2 Subject Types and Their Responsiveness

Do the calculator inputs of a subject predict their responsiveness? I categorize subjects based

on their modal base term in lottery tasks in the Calc treatment. For a subject, their modal

base term is the base term that is used in the highest number of rounds, among all lottery

rounds of this subject. Their type is the base term group to which their modal base term

belongs.13 The types are a simple but powerful summary of the calculator inputs at the

subject-level, due to the within-subject stability of calculations documented in Result 2. The

five base term groups correspond to five subject types: 1) Expected value; 2) Number; 3)

Linear box; 4) Linear money; 5) Non-linear. To validate that the subject within a type indeed

primarily used the base term group associated with that type, Table 7 shows the fractions

of rounds where each base term group appears (similar to Panel B of Table 6), conditional

on each subject type. All types use their associated base term group in more than 80% of

rounds, and non-associated base term groups are only used sporadically.

I construct a measure of an individual subject’s responsiveness using the regression slope
12Appendix Figure A.2 displays the CDF of lottery valuations separated into three disjoint groups of rounds:

1) rounds employing only EV terms; 2) rounds employing only non-EV terms; and 3) rounds employing
both EV and non-EV terms. The figure demonstrates that when valuations do deviate from expected values
despite the presence of EV terms, these deviations are primarily attributable to the concurrent use of non-EV
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Subject Type
Base Term Group expected value number linear money linear box nonlinear
expected value 92.2% 5.7% 6.2% 40.0% 12.7%
number 5.5% 89.0% 14.4% 15.6% 3.2%
linear money 4.6% 15.8% 86.3% 11.1% 22.2%
linear box 2.5% 4.8% 3.9% 88.9% 1.6%
nonlinear 8.1% 1.8% 1.3% 6.7% 81.0%

Table 7: Fractions of lottery rounds where each base term group (the row) appears, conditional
on subject type (the column)

of valuations on expected values. Specifically, I run the regression

|valuation| = α + r |expected value| + ϵ (1)

using all lottery tasks completed by the subject in the Calc treatment. The subject’s

responsiveness in lottery tasks is the estimated coefficient r. A responsiveness of 0 indicates

complete unresponsiveness – on average, the valuations do not change with the expected

values. On the other hand, a responsiveness of 1 indicates complete responsiveness – the

valuations change by the same magnitude as the expected values. This measure of an

individual subject’s responsiveness can be expanded to the mirror tasks and the NoCalc

treatment by the slopes of analogous regressions.

Figure 5 shows the histograms of individual responsiveness in lottery tasks in the Calc

treatment, first for all subjects and then separately for each subject type. The responsiveness

is censored at a lower bound of −0.2 in the graphs for improved visibility. From the upper-left

panel encompassing all subjects, it is immediate to see that responsiveness has a bimodal

distribution – most subjects concentrate around complete responsiveness (r = 1) and complete

unresponsiveness (r = 0), and only a small fraction of subjects are in the middle range. The

average responsiveness in the subject population is 0.48.

The distributions of responsiveness for different subject types reveal substantial hetero-

geneity beneath the bimodal aggregate distribution. These two distinct modes correspond

terms rather than to the dropped numerical factors.
13The categorization is robust to a machine learning-based categorization based on the estimated unsuper-

vised topic model, mentioned in Footnote 8. See Appendix B for more details.
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Figure 5: Histograms of individual responsiveness in lottery tasks in the Calc treatment

to two broad groups of subjects. The EV-type subjects (38.1% of the population) tend to

exhibit responsiveness of nearly one (average = 0.85), which implies their lottery valuations

closely track expected values. For example, these subjects value lotteries G8/L8 (with

|EV | = 2.08) at an average of $3.36, while valuing lotteries G92/L92 (with |EV | = 23.92) at

an average of $21.48. In contrast, non-EV-type subjects (61.9% of the population) exhibit

much lower responsiveness (average = 0.25). Their valuations increase only minimally as

probability increases: their average valuation of lotteries G8/L8 is $11.40, while their average

valuation of lotteries G92/L92 is only $16.38, despite the large difference in expected values.

In aggregate, this stark difference between EV-type and non-EV-type subjects produces the

bimodal distribution of responsiveness observed in the overall sample.

Most strikingly, a substantial proportion of non-EV-type subjects exhibit responsiveness

close to or even below zero. Among all non-EV-type subjects, 26.4% exhibit responsiveness

between 0 and 0.1, and another 26.4% exhibit responsiveness below 0.14

14 It is worth pointing out that the fraction of subjects who are extremely unresponsive in this study is at
the higher end of the literature, but not unprecedented. In this study, 37.1% of all subjects exhibit lottery
responsiveness below 0.1 in the NoCalc treatment, and 35.1% in the Calc treatment. To facilitate comparison
with other studies, it is important to note that many experiments ask subjects to value binary lotteries
that vary in both probabilities and monetary outcomes, whereas the responsiveness measure in this paper
primarily captures sensitivity to probability changes. Accordingly, I define responsiveness in other studies
at the subject-outcome pair level, where a given subject values lotteries with fixed monetary outcomes but
varying probabilities. Using this definition, the two experiments in Enke and Graeber (2023) show that 18.6%
and 32.7% of subject-outcome pairs, respectively, exhibit responsiveness below 0.1. l’Haridon and Vieider
(2019) report that 10.2% of subject-outcome pairs have responsiveness below 0.1, McGranaghan et al. (2024)
report 10.1%, and across three experiments in Bruhin, Fehr-Duda and Epper (2010), this fraction ranges
from 9.6% to 13.7%.
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Moreover, although subject types are constructed only using calculator inputs in lottery

tasks, they can also predict the responsiveness in mirror tasks. Appendix Figure A.1 shows

the histograms of individual responsiveness in mirror tasks in the Calc treatment by subject

type. For all types, the responsiveness in mirror tasks is quantitatively similar to that in

lottery tasks. The EV-type subjects submit responsive mirror valuations (average = 0.82),

but interestingly, their mirror valuations are on average slightly less responsive than their

lottery valuations. The non-EV-type subjects submit highly unresponsive mirror valuations,

and their mirror responsiveness is similar to that in lottery tasks.

Result 4. In both lottery and mirror tasks, EV-type subjects tend to be highly responsive,

while non-EV-type subjects tend to be highly unresponsive. In aggregate, the distribution of

unresponsiveness is bimodal.

The low responsiveness of the non-EV-types is not entirely driven by subjects submitting

identical valuations across many tasks. Appendix Figure A.4 reproduces Figure 5 excluding

those subjects who submit the exact same valuation to no fewer than 7 out of a total of 9

lottery rounds. The apparent bimodal distribution of responsiveness is robust to excluding

these subjects, and the remaining non-EV-types still exhibit very low responsiveness.

5.3 Types and Responsiveness in the NoCalc Treatment

After documenting the responsiveness of each subject type in the Calc treatment, I now turn

to their responsiveness in the NoCalc treatment. I study this with two purposes. First, I

examine to what extent the calculator design is externally valid – capturing the approaches

subjects would naturally take facing decisions under risk in the absence of the calculator.

Second, if for some types of subjects the valuations do differ between treatments, I study how

the valuations change between treatments, and which set of valuations better reflect their

risk preferences.

Figure 6 shows the distributions of individual responsiveness in lottery tasks in the NoCalc

treatment by subject type. First, even though types are constructed only using calculator input

data from the Calc treatment, they are still predictive of the responsiveness in the NoCalc

treatment – the EV-types exhibit higher responsiveness than the non-EV-types in the NoCalc

treatment. Second, the aggregate distribution of responsiveness in the subject population
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Figure 6: Histograms of individual responsiveness in lottery tasks in the NoCalc treatment

differs between treatments – there are relatively fewer subjects with high responsiveness

(near 1) and relatively more subjects with intermediate responsiveness in NoCalc. Third, this

difference is attributable solely to the EV-types. The EV-types exhibit lower responsiveness

in the NoCalc treatment when compared with the Calc treatment, while the other types

show similar responsiveness across treatments.15 Using the Kolmogorov-Smirnov (K-S) test

to compare the distributions of valuations in the two treatments separately for each subject

type and task confirms this result. After applying the Holm-Bonferroni method to control

the familywise error rate, the K-S tests reject the null hypotheses of equal distributions for

EV-types in 7 of the 8 lottery tasks, while the K-S tests fail to reject the null hypotheses for

31 out of the 32 (8 tasks × 4 non-EV-types) tests involving non-EV-types.

Result 5. Comparing across treatments reveals an overall shift toward higher responsiveness

in the Calc treatment. This shift is entirely driven by EV-type subjects, while non-EV-types
15Comparing the Calc treatment with the NoCalc treatment, the two patterns of (1) a slight increase of

aggregate responsiveness and (2) a sharp increase of subject masses around complete responsiveness are
broadly consistent with previous studies. Beauchamp et al. (2020) conduct lottery valuation experiments with
a treatment condition where they explicitly provide the expected value on subjects’ screens when they value
the lotteries. I conduct a re-analysis of Beauchamp et al.’s (2020) data by constructing responsiveness at the
subject-outcome pair level (See Footnote 14 for the definition of subject-outcome pairs). Providing subjects
explicitly with the expected values of the lotteries increases the fraction of subject-outcome pairs with r > 0.9
from 24.4% to 33.7%, and the average responsiveness from 0.57 to 0.65. Moreover, Gao and Garagnani (2025)
provide subjects with a calculator when they value lotteries, without tracking the calculations. They show
the calculator leads to an increase of risk-neutral choices, but no decrease of choices violating first order
stochastic dominance. This is consistent with my data, since the calculator only changes the valuations of
the EV-types, who become almost risk neutral with the calculator, and tend not to make dominated choices
in the NoCalc treatment.
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submit statistically indistinguishable valuations across treatments.

Overall, these observations indicate that, for non-EV-types, the calculator design seems

to well capture the natural approaches subjects would take facing decisions under risk, while

the EV-types take a different approach in the presence of a calculator. For the EV-types, a

natural follow-up question is: Which valuations better represent their welfare-relevant risk

preferences? The reconciliation stage speaks to this question, where the subjects are given

a chance to reconcile their inconsistent valuations in the NoCalc and Calc stages for the

same task. In the reconciliation stage, the EV-type subjects revise their valuation in the

NoCalc treatment to the one in the Calc treatment more than three times as frequently as

they do the opposite. In other words, their almost risk-neutral valuations in Calc better

represent their risk preferences than their moderately unresponsive valuations in NoCalc.

See Appendix E for more details from the analysis of the reconciliation stage. For the

EV-types, the between-treatment change of valuations and the reconciliation stage results

have important theoretical implications, which I will return to in Section 6.

6 What Drives Unresponsiveness?
What drives the unresponsiveness observed in lottery valuations? The key advantage of my

experimental design is that the calculator input data can help distinguish between theoretical

mechanisms that are indistinguishable using only valuations. This section uses the joint pat-

terns of the calculator inputs and valuations to examine the mechanisms behind unresponsive

lottery valuations through three perspectives. First, I briefly revisit the debate of whether

the unresponsive lottery valuations mainly reflect risk preferences or cognitive complexity.

Second, to the extent that complexity can explain unresponsiveness, the exact nature of this

complexity remains understudied. I study the nature of this complexity by focusing on two

broad camps of complexity, implementation costs and incomplete understanding. Third, I

examine whether two specific theories – probability weighting and attribute substitution –

can explain the linear money calculations.
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6.1 Risk Preferences or Complexity-Driven Mistakes? A Revisit

A central question in decision-making under risk concerns whether observed unresponsive

lottery valuations primarily reflect underlying risk preferences (economic agents’ welfare-

relevant ordering) or complexity-driven mistakes (costs or difficulty to make decisions according

to the risk preferences), which is a distinction with profound implications and that has sparked

a recent debate (Oprea, 2024b, Banki et al., 2025, Wu, 2025, Li et al., 2025, Wakker, 2025). If

unresponsiveness stems mainly from risk preferences, it should guide both economic welfare

analysis and policy design. Conversely, if it reflects primarily complexity-driven errors,

this calls for careful treatment of valuation data in welfare analysis and suggests policy

interventions to improve decision quality.

Using only the lottery valuation data – without relying on information from the cal-

culations or mirror tasks – I document a distinctive empirical pattern that informs this

question: the bimodal distribution of responsiveness when subjects are provided with calcu-

lators. As becomes evident from comparing Figure 5 with Figure 6, the probability mass

in the middle range of responsiveness diminishes substantially after providing subjects with

calculators, creating two distinct modes. This bimodal pattern offers important insights into

the interpretation of measured responsiveness.

For both modes, the evidence suggests that the unresponsiveness these subjects exhibit

in the NoCalc treatment (which resembles the experiments measuring risk attitudes in the

literature) is unlikely to be solely driven by risk preferences. On the one hand, for the

highly responsive mode (largely overlapping with the EV-types), the reconciliation stage

suggests that these subjects’ preferences are approximately risk-neutral. Therefore, their

unresponsiveness in the NoCalc treatment largely stems from non-risk preference factors. On

the other hand, for the subjects in the extremely unresponsive mode (defined as r < 0.1, mostly

consisting of the non-EV-types), while risk preferences may have potentially contributed

to their unresponsiveness, the magnitude of unresponsiveness observed exceeds what can

plausibly be attributed to risk preferences alone, though the relative importance of complexity

and risk preferences remains an active area of investigation. Therefore, the only subjects

whose unresponsive NoCalc valuations could be plausibly attributed solely to risk preferences
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are those moderately responsive in the Calc treatment, lying between the modes.

To quantify how much of the aggregate unresponsiveness is due to the two modes and

how much is due to the moderately responsive, I decompose the aggregate unresponsiveness

into the contribution of each subset of subjects. The contribution of any subset G is defined

as C(G) :=
∑

i∈G
(1−ri)∑

j∈S
(1−rj) ,

16 where S is the set of all subjects, and ri is the responsiveness of

subject i as defined in Equation (1). This decomposition exercise reveals that the mode

exhibiting high responsiveness in the Calc treatment (defined as r > 0.9, 34.7% of subjects)

contributes 21.1% to the aggregate unresponsiveness in the NoCalc treatment, the mode

exhibiting extreme unresponsiveness (defined as r < 0.1, 35.1% of all subjects) contributes

49.8%, and the rest only contribute 29.0%.

In summary, most of the aggregate unresponsiveness is attributable to either of the modes,

and only a minority can be attributed to the moderately responsive subjects. In other words,

most of the aggregate unresponsiveness cannot be solely attributed to risk preferences, and

complexity plays a significant role in the elicited lottery valuations.

6.2 Implementation Costs Or Incomplete Understanding?

To the extent that complexity can explain unresponsiveness, the exact nature of this complexity

remains understudied. I classify complexity into two broad camps, and seek evidence in the

data that supports or contradicts each camp. The camp of implementation costs attributes

unresponsiveness to costs of implementing optimal procedures despite awareness of them,

while the camp of incomplete understanding attributes it to a lack of complete conceptual

understanding of the lotteries. The two camps are not strictly mutually exclusive, but are

useful as a broad classification of the mechanisms behind unresponsiveness (Handel and

Schwartzstein, 2018).

The conceptual distinctions between implementation costs and incomplete understanding

are of fundamental interest – if the implementation costs prevail, unresponsive lottery

valuations documented in the lab experiments will have limited predictive power for high-

16In my data where all subjects perform the same set of tasks, it can be shown that
∑

i∈G
ri

|G| (i.e., the
average individual responsiveness in subset G) is the regression slope of Equation (1) using the data from all
subjects in any G ⊆ S (i.e., the aggregate responsiveness in subset G). This gives C(G) its interpretation as
the contribution of subset G to the aggregate unresponsiveness. In other words, C(G) measures how much
the aggregate unresponsiveness would decrease, if all subjects in G exhibited complete responsiveness.
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stakes real-life decisions under risk, since the implementation costs can be overcome with

the high-stakes, while incomplete understanding indicates the opposite, and calls for policy

solutions to help people make decisions under uncertainty. See more discussions on this

distinction in Handel and Schwartzstein (2018) and Enke et al. (2023).

Implementation Costs The theory of implementation costs explains unresponsive lottery

valuations by the costs of implementing valuation procedures that represent their risk

preferences (see, e.g., Payne, Bettman and Johnson, 1988, Oprea, 2024a). For example, it

might be costly for economic agents to calculate the expected values of lotteries. As a result,

even if some agents are risk neutral and understand that calculating the expected values leads

to their preferred lottery valuations, these subjects may resort to less costly calculations and,

in turn, submit lottery valuations that are unresponsive. When valuing mirrors, these agents

face analogous implementation costs in calculating the expected values, and may similarly

choose simpler calculations that generate valuations similar to those of lotteries.

The theory of implementation costs offers two predictions testable in the current study.

First, decreasing the implementation costs should lead to more responsive valuations. This

prediction is verified in Result 5, where I document that the EV-type subjects submit much

more responsive valuations in the Calc treatment, where implementation costs for explicit

computational procedures are arguably smaller, than in the NoCalc treatment.

Subject Type Lottery Avg Length Mirror Avg Length
Expected value 11.3 11.5
Number 4.4 5.4
Linear money 4.5 5.1
Linear box 11.0 9.9
Nonlinear 13.0 12.7

Table 8: Length of Calculator Inputs (in Characters) by Subject Type and Task Type

The second prediction of implementation costs is that the calculations generating un-

responsive valuations should involve smaller implementation costs than those generating

responsive valuations. I test this prediction by constructing a proxy of the implementation

costs: the length of calculator inputs, which is defined as the total number of characters

(digits, operation signs, and decimal points) in all numerical expressions in the calculator
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input. This metric directly captures implementation costs in our experimental environment

since, by design of the calculator, each character requires a separate operation – either a

button click or a keystroke – to type. For example, calculating 75 × 26/100 requires nine

operations, while entering 15 requires only two.

Table 8 shows the average length of calculator inputs by subject type and task type. The

data reveal a clear pattern: number-type and linear money-type subjects consistently perform

less costly calculations than the EV types, for both lottery and mirror tasks. This aligns with

the predictions of implementation costs. However, the current experimental design cannot

establish a causal link between implementation costs and the choice of shorter calculator

inputs, and in turn, the unresponsive valuations they generate.

Result 6. There is strong evidence that implementation costs play a significant role in the

unresponsiveness exhibited by EV-type subjects in the NoCalc treatment. For number and

linear money types, the evidence supporting the roles of implementation costs is suggestive

and less definitive.

Incomplete Understanding Unresponsiveness could also arise through incomplete con-

ceptual understanding of the valuation task for a variety of reasons. For example, a subject

may understand that G92 is more preferable than G8, but does not understand by how much.

Another example is when a subject has no clear understanding of how to translate lottery

primitives into monetary valuations.

Taking advantage of the calculator input data, I can identify a subset of calculations

that are strongly indicative of incomplete understanding. This identification process uses

the feature of procedures defined in Section 4.3, which capture the functional form that the

subjects use to map the primitives of the task to their valuations. If a procedure is strictly

decreasing in any of the monetary outcomes, the procedure would imply a lower valuation

when the monetary outcome increases. Similarly, if a procedure is a strictly decreasing

function in b1, the procedure would imply a lower (absolute) valuation when the probability

of the non-zero outcome increases. These two types of procedures, when observed, strongly

suggest that the observed valuations are due to incomplete understanding. I refer to these

two types of procedures as decreasing procedures.17

17Formally, I define a procedure to be decreasing if the procedure (after substituting b2 with 100 − b1) is
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The identification of decreasing procedures provides stronger evidence of incomplete un-

derstanding than simply observing valuations that violate monotonicity. While monotonicity

violations in stated valuations could arise from multiple sources – including typos, cognitive

imprecision (Khaw, Li and Woodford, 2021), or other factors that introduce randomness

into responses – such violations do not necessarily demonstrate that subjects fundamentally

misunderstand some aspects of the lotteries or the valuation task. In contrast, decreasing

procedures reveal systematic errors in subjects’ approach to the task itself. When a subject

applies a decreasing procedure, this reflects a deliberate approach that leads to incorrect

valuations. The procedural data thus provides direct evidence of incomplete understanding:

subjects are not merely making noisy responses around a correct understanding, but are

systematically implementing flawed approaches to lottery valuation.

Subject Type Lottery % Decreasing Mirror % Decreasing
Expected value 2.2% 2.2%
Number 3.3% 3.3%
Linear money 5.0% 6.1%
Linear box 2.5% 16.7%
Nonlinear 39.9% 37.9%

Table 9: Share of decreasing procedures by subject type and task type

Table 9 shows the shares of decreasing procedures for each subject type. Nonlinear type

subjects disproportionately use decreasing procedures in both lottery and mirror tasks, while

other types mostly avoid using decreasing procedures. It is important to note that while the

presence of a decreasing procedure strongly suggests the presence of incomplete understanding

(sufficiency), the absence of a decreasing procedure does not meaningfully suggest the absence

of incomplete understanding (necessity). For example, a number procedure is by definition

never decreasing, since none of the primitives appears in the procedure.18 But a number

procedure may still be a result from incomplete understanding.

strictly decreasing in any of the primitives m1, m2, or b1, at any point within the range {(m1, m2, b1) : m1 ≥
0, m2 ≥ 0, 0 ≤ b1 ≤ 100}. For example, among all procedures listed in Panel A of Table 5, there are two
decreasing procedures: b2 × m1/100 and 100/b1.

18Though number (and expected value) procedures are by definition not decreasing, since Table 9 shows
the shares of decreasing procedures by subject type instead of procedure group, the shares of decreasing
procedures among these subject types can still be positive.
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Result 7. There is strong evidence supporting the presence of incomplete understanding in

the non-linear type subjects, since these subjects disproportionately use decreasing procedures.

6.3 What Can Explain the Linear Money Calculations?

Linear money calculations are the third-largest group of calculations, behind the easily-

interpretable EV group and the largely uninterpretable number group. Thus, linear money

calculations offer unique insights into the decision-making processes of an important group

of subjects. Here, I examine whether two theories – probability weighting and attribute

substitution – can explain the appearance of these calculations and their resulting valuations

in the data.

Probability Weighting Probability weighting is when economic agents evaluate lotteries by

applying subjective probability weights to monetary outcomes rather than using the objective

probabilities. Formally, these weights are determined by a probability weighting function

w(·) that transforms objective probabilities into probability weights. In the current context,

assuming the utility is linear for small stakes, for a lottery Gn, the valuation generated

by probability weighting would be w(n/100) × 26, where w(·) is the probability weighting

function, and analogously for a lottery Ln.

If we take probability weighting as a literal description of the valuation process, it has

the potential to explain the appearance of linear money procedures. To illustrate, consider

an agent valuing (G75, Lottery) by literally implementing probability weighting. This

agent would calculate their valuation using the expression w(0.75) × 26. If, for example,

w(0.75) = 0.6, the agent would perform 0.6 × 26 in the calculator. From the experimenter’s

perspective, this calculation would appear as a linear money procedure – specifically, one

that multiplies the monetary outcome (26) by a coefficient (0.6) that differs from the true

probability (0.75) and cannot be matched with any task primitives.

Moreover, when the linear money procedures are interpreted as literally implementing

probability weighting, it should be possible to directly recover subjects’ probability weighting

function from their calculations. Specifically, when a subject valuing a lottery Gn/Ln uses

a linear money procedure that assigns coefficient γ1 to the money amount m1, this reveals

that their probability weight would be w(n/100) = γ1 under this interpretive framework. To
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Figure 7: Probability weighting function recovered from linear money procedures for linear
money subjects

invert the example in the previous paragraph, if I see a subject using the procedure 0.6 × m1

when valuing (G75, Lottery), through the lens of probability weighting, I can infer that the

probability weight is w(0.75) = 0.6.19

Figure 7 displays the recovered probability weighting function as the average of the

recovered probability weights. The sample is restricted to the rounds where linear money

procedures are used by linear money-type subjects.20 The extremely low slope (0.093) of

the probability weighting function demonstrates that the probability weights are almost

entirely unresponsive to changes in the actual probability. Such extreme unresponsiveness

is difficult to reconcile with probability weighting as a theoretical account of these subjects’

calculations. Moreover, the probability weighting function recovered using the calculations

presents a stark contrast to the inverse S-shaped probability weighting function typically

recovered using valuation data (e.g., Gonzalez and Wu, 1999). Thus, while subjects’ use

of linear money procedures superficially aligns with probability weighting’s functional form

predictions, evidence from the coefficients in these linear money procedures casts significant

doubt on probability weighting as the underlying mechanism leading to these calculations.

It is important to note that this analysis should not be interpreted as rejecting probability

weighting as a descriptive model of choice patterns. Rather, it suggests that when subjects

engage in explicit valuation calculations, they do not appear to be literally implementing
19I only use the coefficient of m1, but not the coefficient of m2, to recover the probability weighting function.

This is because m2 is always zero in our experimental design. As a result, subjects may rationally omit terms
involving m2 from their calculations, making it impossible to reliably recover the probability weights placed
on m2.

20Expanding the sample to all linear money procedures regardless of subject type leads to similar results.
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probability weighting procedures. The theory may still provide an accurate “as-if” characteri-

zation if, for instance, non-linear probability cognition automatically generates probability

weighting patterns at a subconscious level.

Attribute Substitution The theory of attribute substitution (Kahneman and Frederick,

2002) provides a framework for understanding the linear money calculations observed in

the data. According to this theory, “an individual assesses a specified target attribute of a

judgment object by substituting another property of that object – the heuristic attribute –

which comes more readily to mind” (p. 53). For attribute substitution to govern judgment,

the necessary conditions include: “(1) the target attribute is relatively inaccessible; and (2) a

semantically and associatively related attribute is highly accessible” (p. 54). In the context

of lottery valuation tasks, these conditions are plausibly satisfied: the target attribute (the

valuation according to the preference) may be relatively inaccessible, while the heuristic

attribute (the monetary outcomes of the lottery) is highly accessible and semantically related

to valuation since both involve monetary amounts.

The observed prevalence of linear money calculations in the data is consistent with at-

tribute substitution theory, though the theory does not a priori predict this specific functional

form. Rather, having documented these linear patterns empirically, one can retrospectively

understand why they represent a natural manifestation of attribute substitution. When

subjects substitute monetary outcomes for valuations, they must still transform these mon-

etary amounts into their stated valuations through some functional relationship. Linear

transformations emerge as a particularly natural choice given their simplicity.

This theory explains the extreme unresponsiveness to probabilities through a specific

mechanism: when subjects substitute monetary outcomes for proper lottery valuations, they

are essentially replacing a complex task (combining probabilities and outcomes to form

their valuations) with a simpler one (focusing primarily on the monetary amounts). This

substitution leads to a decision-making process that is primarily based on the monetary

outcomes, and inherently neglects the probabilities.

The attribute substitution theory emerging from the calculator input data can also explain

an empirical pattern observed across multiple studies: lottery valuations are much more

responsive to changes in monetary outcomes than to changes in probabilities, particularly
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in the small-stakes experimental settings that are common in the literature. Attribute

substitution theory provides a compelling explanation for this asymmetric responsiveness

because subjects who substitute monetary outcomes for proper valuations attend primarily to

the monetary amounts, while probabilities become largely irrelevant to their decision-making.

To illustrate this asymmetric responsiveness, I analyze lottery valuation data from Enke

and Graeber (2023), which contains valuations of lotteries in the form of ($X, p; 0) that

vary systematically along both probability (p) and monetary outcome (X > 0) dimensions.

I measure responsiveness by regressing valuations on expected values within subsets of

lotteries that hold one dimension constant while varying the other – this generates separate

responsiveness measures for probability changes (using lotteries with identical monetary

outcomes but different probabilities) and monetary outcome changes (using lotteries with

identical probabilities but different monetary outcomes).21 Across all probabilities of the non-

zero outcome (5%-99%), responsiveness to monetary outcomes is remarkably high, ranging

from 0.83 to 6.29 (see Figure 8). In contrast, responsiveness to probabilities is substantially

lower across all non-zero monetary outcomes ($15-$25), ranging from 0.48 to 0.59. The

asymmetric responsiveness has considerable theoretical significance – under standard expected

utility theory with any strictly concave utility function, valuations should be less responsive

to changes in the monetary outcome than to changes in probabilities – precisely the opposite

of what is observed empirically.22

The most prevalent form of attribute substitution directly observed in the calculator input

data – simply using the non-zero monetary outcome as the valuation (the most common

linear money procedure, see Table 5) – offers an additional testable prediction: responsiveness

to monetary outcomes should be higher when the probability of the non-zero monetary

outcome is smaller. The logic is straightforward: for subjects employing this form of attribute

substitution, increasing the non-zero monetary outcome by $1 increases their valuation

by $1, but increases the expected value by only $1 × p (where p is the probability of the

non-zero outcome). Therefore, the responsiveness (change in valuation divided by change in
21Again, a risk neutral agent would exhibit unit responsiveness to monetary outcomes (r = 1).
22For any binary-outcome lottery (X, p; Y ) where X > Y , under expected utility with concave utility

function, it is straightforward to show that responsiveness to X is greater than responsiveness to p, and in
turn, greater than responsiveness to Y . In Enke and Graeber (2023), Y is fixed at $0, and the responsiveness
of interest is to X (the non-zero monetary outcome).
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Figure 8: Responsiveness of valuations to the positive monetary outcome across different
probabilities. The data is from Enke and Graeber (2023).

expected value) equals 1/p – making responsiveness inversely related to probability. This

prediction is verified in Figure 8, which shows that responsiveness to the non-zero monetary

outcome decreases markedly as the probability increases. With small probabilities of the

non-zero outcome, valuations are extremely responsive to changes in the non-zero outcome,

with responsiveness reaching 6.29 at 5% probability and 4.02 at 10% probability. The

responsiveness remains above 1 for probabilities of 25%, 35%, and 50%, and becomes smaller

than 1 for probabilities of 65% and beyond, clearly demonstrating the predicted inverse

relationship between probability and responsiveness.

Result 8. The linear money type subjects are consistent with the attribute substitution theory.

These subjects base their valuations predominantly on the monetary outcomes, while largely

neglecting the probabilities.

6.4 Summary

Combining evidence from the three perspectives, the calculator input data provide new insights

into the theoretical mechanisms driving unresponsiveness. As a starting point, although

some subjects may have primarily expressed their risk preferences when valuing lotteries

in the NoCalc treatment, most subjects’ behavior is inconsistent with models that assume

valuations solely reflect risk preferences. Separate examination of each subject type reveals

distinct mechanisms driving the unresponsiveness of each type. First, the unresponsiveness

exhibited by EV-type subjects is primarily consistent with implementation costs. Second, for
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number-type subjects, the underlying mechanism is less clear given the limited interpretability

of their calculations. Third, the unresponsiveness of linear money-type subjects provides

strong evidence for the attribute substitution theory. Finally, there is strong evidence that

many non-linear type subjects suffer from incomplete understanding.

7 Connections to the Literature
This study makes contributions to a few strands of literature. First, it contributes to the

literature that studies the roles played by cognitive complexity in the measured risk attitudes.

The literature has amassed significant evidence that, at least to some extent, the observed

departure of small-stake lottery valuations from their expected values are consequences of

cognitive complexity, as opposed to fully reflecting the risk preferences (Harbaugh, Krause and

Vesterlund, 2010, Woodford, 2012, Benjamin, Brown and Shapiro, 2013, Martínez-Marquina,

Niederle and Vespa, 2019, Khaw, Li and Woodford, 2021, Frydman and Jin, 2021, Nielsen

and Rehbeck, 2022, Choi et al., 2022, Enke and Graeber, 2023, Enke and Shubatt, 2023,

Oprea, 2024b, Puri, 2025). As to the exact nature of this complexity, the extant literature

has proposed a few candidate sources, but has not yet reached a consensus over the most

important sources of complexity. My main contribution to this literature is that, by revealing

subjects’ calculations behind the elicited lottery valuations and linking the calculations to

measured risk attitudes, I provide new insights on the sources of this complexity.

Second, the study contributes to the interdisciplinary literature that measures the decision-

making processes that generate observed choices. To reveal this usually unobserved layer,

studies in this literature use various techniques including mouse tracking (Payne, Bettman and

Johnson, 1988), eye tracking (Reutskaja et al., 2011), intermediate choice tracking (Caplin,

Dean and Martin, 2011), and verbal descriptions of decision-making processes (Ericsson and

Simon, 1980). Most relevantly, a branch of this literature has applied these techniques to risk

attitudes, the very question studied here (Payne, Bettman and Johnson, 1988, Arieli, Ben-Ami

and Rubinstein, 2011, Pachur et al., 2013, 2018, Harrison and Swarthout, 2019, Alós-Ferrer,

Jaudas and Ritschel, 2021, Arrieta and Nielsen, 2023). The techniques developed so far have

mostly focused on the information acquisition aspect of the decision-making process, that is,

what information is accessed. This study makes an important methodological contribution to
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this literature by developing the calculator design that recovers the computational aspect

of the decision-making process, i.e., how decision-makers utilize the accessed information

to perform calculations, which cannot be recovered by previous techniques. The calculator

design developed in this study, along with the features of procedures and base terms, can be

easily transplanted and deployed to studying the computational aspect of the decision-making

processes in other domains of individual and strategic decision-making.

This study also contributes to the literature that explicitly models and measures procedural

decision-making (Simon, 1955, Payne, Bettman and Johnson, 1988, Oprea, 2020, Arrieta and

Nielsen, 2023, Banovetz and Oprea, 2023, Oprea, 2024a). This literature takes procedures as

the fundamental object that economic decision-makers need to choose in the decision-making

processes. While the standard theory aims to describe how people choose from feasible actions,

this literature aims to describe how people choose from feasible procedures, each of which is a

mapping from the task primitives to the actions. A particular focus of this literature is how

the characteristics of the decision-making environment and the implementation costs of these

procedures affect the use of these procedures and the actions resulting from these procedures.

The current study records the computational aspect of the procedures and measures the

implementation costs, and thus provides direct tests of the predictions made by this literature.

More broadly, this study joins a long list of literature studying anomalies in choices under

risk (e.g., Kahneman and Tversky, 1979, Tversky and Kahneman, 1992, Gonzalez and Wu,

1999, Wakker, 2010, Bruhin, Fehr-Duda and Epper, 2010, O’Donoghue and Somerville, 2018,

Beauchamp et al., 2020, Bernheim and Sprenger, 2020, Oprea, 2024b, McGranaghan et al.,

2024). This study micro-founds the observed unresponsiveness and fourfold patterns in lottery

valuations by documenting the decision-making processes behind these valuations.
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Appendices

A Additional Figures and Tables

lottery procedure group

mirror procedure group expected value linear box linear money nonlinear number

expected value 28.9% 0.2% 2.9% 2.5% 2.5%

linear box 0.7% 1.6% 0.5% 0.3% 1.0%

linear money 1.8% 0.5% 9.0% 0.8% 2.7%

nonlinear 2.2% 0.6% 1.4% 4.5% 0.8%

number 1.1% 0.9% 6.9% 0.9% 24.9%

P(same group|lottery group) 83.4% 42.6% 43.5% 50.0% 78.1%

Table A.1: Joint distribution of lottery procedure groups and mirror procedure groups, among
within-subject pairs. The final row is the probability that the lottery and mirror procedure
groups are the same, conditional on the lottery procedure group.

Subject Type

Base Term Group expected value number linear money linear box nonlinear

expected value 88.0% 12.8% 16.3% 38.9% 23.8%

number 5.3% 79.9% 31.4% 6.7% 12.7%

linear money 11.7% 13.7% 54.6% 20.0% 25.4%

linear box 2.3% 5.7% 5.6% 61.1% 9.5%

nonlinear 7.2% 2.9% 3.9% 7.8% 63.5%

Table A.2: Fractions of mirror rounds where each base term group (the row) appear, condi-
tional on subject type (the column)
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Figure A.1: Histograms of individualnresponsiveness in mirror tasks in the Calc treatment
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Figure A.2: CDF of lottery valuations for three disjoint groups of rounds
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Figure A.3: CDF of mirror valuations in the Calc treatment, conditional on employing each
group of base terms.
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Figure A.4: Histograms of individual responsiveness in lottery tasks in the Calc treatment,
excluding those subjects who give the same valuation in no fewer than 7 out of a total of 9
tasks, and separately for each type of subjects.
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To examine the validity of Result 3 in the NoCalc treatment, for each round in the NoCalc

treatment, I match it with the round in the Calc treatment where the same subject faces the

same lottery task. I then reproduce Figure 4 using valuations from the NoCalc rounds and

the calculator input from their matched Calc rounds. The reproduced graph can be found in

Appendix Figure A.5. The headline observations from Result 3 still hold. NoCalc rounds

where the subjects employ an EV term in their matched Calc rounds generate responsive

and concentrated lottery valuations, though they are not quite to the same degree as their

matched Calc rounds. Moreover, NoCalc rounds where the subjects employ any non-EV term

in their matched Calc rounds again generate unresponsive and dispersed lottery valuations.

Many of the idiosyncratic patterns conditional on groups are also preserved. For example,

conditional on the matched Calc round using a money base term, the NoCalc valuations

again have large point masses at $26 (the maximum absolute valuation).
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Figure A.5: Distributions of lottery valuations in the NoCalc treatment, grouped by the base
terms used by the same subjects in the corresponding Calc treatment rounds (see the text
for details)
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B Topic Modeling of Calculator Inputs
Latent Dirichlet Allocation (LDA) is an unsupervised machine learning technique designed to

discover hidden thematic structures in collections of documents (Blei, Ng and Jordan, 2003).

In the context of this paper, I apply LDA to uncover natural groupings in the calculator

inputs provided by subjects.

LDA operates on the intuition that documents (in this case, calculator inputs) can be

represented as mixtures of topics, where each topic is characterized by a distribution over

words (in this case, base terms). LDA simultaneously estimates both the topic composition

of each document and the word distribution of each topic. Formally, LDA models each topic

k ∈ {1, 2, . . . , K} as a multinomial distribution ϕk over the vocabulary of base terms. Each

ϕk is a vector where the component ϕk,v represents the probability of base term v appearing

in topic k. These probabilities satisfy ∑
v ϕk,v = 1 for all topics k. For each calculator input d,

LDA also estimates a topic mixture θd, where each component θd,k represents the proportion

of terms in document d that are drawn from topic k.

The key advantage of using LDA in this study is that it allows for the identification of

the “semantic” relationship between base terms without imposing a predetermined structure.

Rather than manually categorizing base terms, LDA provides an unsupervised, data-driven

approach to uncovering natural groupings based on how base terms co-occur within calculator

inputs. This helps validate the intuitive categorization of base terms into the five groups

(Expected value, Number, Linear money, Linear box, and Non-linear) used in the main

analysis.

To implement the LDA model, I represented each calculator input in lottery tasks as a

“document” defined by its corresponding base term set. This approach treats the collection of

base terms associated with a calculator input as analogous to the words in a text document.

For model specification, I set the number of topics (a hyperparameter that needs to be

manually set) K = 5 to align with the five base term groups hypothesized in the main text.

This parameter choice facilitates direct comparison between the data-driven topics and the

conceptually defined groups.

Appendix Figure B.1 presents the LDA-generated topics and the associated probabilities
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of base terms appearing in each topic. The clustering of specific base terms within topics

reflects their tendency to co-occur in subjects’ calculations, providing a natural basis for

grouping functionally similar terms. The results strongly support the classification of base

terms into the five groups used in the main analysis. Topic 0 (34.1%) is dominated by terms

involving the product of box quantities and monetary amounts (b1 × m1, b2 × m2), clearly

corresponding to the expected value group. Topic 1 (33.4%) is primarily characterized by

the constant term C, validating the number group. Topic 2 (19.5%) shows high probabilities

for the monetary terms m1 and m2, aligning with the linear money group. Topic 3 (9.9%)

features box quantities b1 and b2 as its most prominent terms, corresponding to the linear

box group. Finally, Topic 4 (3.1%) captures various non-linear combinations of primitives

(b2 × m1, 1/b1, etc.) that do not fit into the other categories, supporting the non-linear group.

This unsupervised classification thus provides strong empirical validation for the five base

term groups employed throughout the paper.

It is worth noting that LDA estimation involves random initialization, which can affect

the resulting topic and word distributions. Different initializations may produce somewhat

different topic structures. However, in testing with multiple random initializations, I found

that the vast majority of estimation runs generated at least 3-4 topics that clearly corresponded

to the base term groups described above.
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Figure B.1: LDA-generated topics and the probabilities of base terms in each topic

The topic model results can also be leveraged to construct an alternative approach to
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subject categorization. Rather than using modal base terms as described in Section 5.2, I

aggregated the topic distributions of all calculator inputs to the subject level by averaging

the document-topic mixtures (θd) across all documents (calculator inputs) produced by each

subject in lottery tasks. This produces a subject-level topic distribution. I then classified each

subject according to their dominant topic – the topic with the highest average probability. For

example, subjects whose calculator inputs showed the highest average probability for Topic 0

(expected value) were classified as expected value type subjects. Remarkably, this LDA-based

classification method yielded 95.0% agreement with the modal base term approach used in the

main text. This high level of consistency between two methodologically distinct approaches

to subject categorization provides strong evidence for the robustness of the subject type

classifications and further validates the analysis of type-specific behaviors presented in the

paper.
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C Example Calculator Inputs
Below, I show randomly drawn example calculator inputs corresponding to the top 15 most

frequent base term sets in lottery rounds. For each base term set, I give two examples, first a

lottery round and then a mirror round. These top 15 base term sets collectively account for

90.5% of lottery rounds and 88.1% of mirror rounds.

Please note that, the experimental program elicits the willingness to pay for the lot-

tery/mirror in gain tasks. However, the program instead elicits willingness to prevent (the

maximum amount willing to forgo to prevent the lottery/mirror from happening) in loss

tasks. In these tasks, the certainty equivalent is the negative of the willingness to prevent.

As a result, the last row of the Result column represents the valuation in gains tasks, but the

negative of the valuation in loss tasks. See Appendix G for the complete instructions.

• Base term set: {C}, frequency in lottery: 28.82%, frequency in mirror: 30.58%

– Subject ID: 5iu9eyzk

– Task: L25 lottery

Line Numerical Expression Result

1 24 24

– Subject ID: 6n65prfw

– Task: L92 mirror

Line Numerical Expression Result

1 7 × 3 21

• Base term set: {b1 × m1}, frequency in lottery: 27.39%, frequency in mirror: 29.92%

– Subject ID: 88171s3p

– Task: L8 lottery

Line Numerical Expression Result

1 8/100 × 26 2.08
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– Subject ID: 7vzs5is7

– Task: L25 mirror

Line Numerical Expression Result

1 26 × 25 650

2 650/100 6.5

• Base term set: {m1}, frequency in lottery: 13.20%, frequency in mirror: 10.29%

– Subject ID: hgqqa7bl

– Task: L75 lottery

Line Numerical Expression Result

1 26 26

– Subject ID: id6e5867

– Task: L92 mirror

Line Numerical Expression Result

1 26 × 1 26

• Base term set: {b1 × m1, b2 × m2}, frequency in lottery: 4.95%, frequency in mirror:

5.50%

– Subject ID: cef3c6ir

– Task: L25 lottery

Line Numerical Expression Result

1 25 × 26 + 75 × 0/100 650

2 650/100 6.5

– Subject ID: cef3c6ir

– Task: G92 mirror
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Line Numerical Expression Result

1 92 × 26 + 8 × 0 2392

2 2392/100 23.92

• Base term set: {C, b1 × m1}, frequency in lottery: 3.03%, frequency in mirror: 2.31%

– Subject ID: qqoqux4t

– Task: G25 lottery

Line Numerical Expression Result

1 26 × .25 6.5

2 13 13

– Subject ID: sysy515p

– Task: G25 mirror

Line Numerical Expression Result

1 25 × 26 650

2 Ans1/100 6.5

3 Ans2 − 3 3.5

Please note that the calculator has an Ans button, which is a shortcut to use

the result from the previous calculation. Ans1 refers to the result of Line 1, and

similarly for others.

• Base term set: {C, m1}, frequency in lottery: 2.75%, frequency in mirror: 1.60%

– Subject ID: wshvt3vq

– Task: G75 lottery

Line Numerical Expression Result

1 26/2 + 1 14

– Subject ID: 668q3qjp
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– Task: G25 mirror

Line Numerical Expression Result

1 26/2 13

2 Ans1 − 8 5

• Base term set: {m2}, frequency in lottery: 1.98%, frequency in mirror: 1.21%

– Subject ID: lhxiwlwe

– Task: L8 lottery

Line Numerical Expression Result

1 2 × 0 0

– Subject ID: l5hdvvcc

– Task: L8 mirror

Line Numerical Expression Result

1 0 0

• Base term set: {b1}, frequency in lottery: 1.38%, frequency in mirror: 1.82%

– Subject ID: 9ny75gkz

– Task: G25 lottery

Line Numerical Expression Result

1 30 × 0.25 7.5

– Subject ID: y1vfs7ou

– Task: G25 mirror

Line Numerical Expression Result

1 30 × .25 7.5

• Base term set: {m1, m2}, frequency in lottery: 1.32%, frequency in mirror: 1.32%
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– Subject ID: 7k9gkzry

– Task: L25 lottery

Line Numerical Expression Result

1 0. 0

2 26.00 26

– Subject ID: pgwtf1kz

– Task: G75 mirror

Line Numerical Expression Result

1 26 + 0 26

• Base term set: {b1, b1 × m1, b2, b2 × m2}, frequency in lottery: 1.27%, frequency in

mirror: 0.00%

– Subject ID: si04ncfg

– Task: L25 lottery

Line Numerical Expression Result

1 25/100 0.25

2 75/100 0.75

3 0.25 × (26) + 0.75 × 0 6.5

– This base term set does not appear in any mirror task

• Base term set: {b1, b1 × m1}, frequency in lottery: 1.16%, frequency in mirror: 0.94%

– Subject ID: 7bfat155

– Task: G25 lottery

Line Numerical Expression Result

1 25/100 0.25

2 0.25 × 26 6.5
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– Subject ID: n4kcm1vv

– Task: G75 mirror

Line Numerical Expression Result

1 75 × 261 19575

2 75 × 26 1950

3 1950/100 19.5

• Base term set: {b2 × m1}, frequency in lottery: 0.88%, frequency in mirror: 0.44%

– Subject ID: 98qa7bdb

– Task: G92 lottery

Line Numerical Expression Result

1 .08 × 26 2.08

– Subject ID: ze63xdkx

– Task: L75 mirror

Line Numerical Expression Result

1 26 × 0.25 6.5

• Base term set: {C, m2}, frequency in lottery: 0.83%, frequency in mirror: 0.33%

– Subject ID: 00f2schi

– Task: G25 lottery

Line Numerical Expression Result

1 5 + 0 5

– Subject ID: ehfz4yq0

– Task: L92 mirror

Line Numerical Expression Result

1 0 + 6 6
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• Base term set: {b1, b2}, frequency in lottery: 0.77%, frequency in mirror: 0.94%

– Subject ID: dwiup06z

– Task: G25 lottery

Line Numerical Expression Result

1 75 + 25 100

2 100/2 50

3 50/4 12.5

– Subject ID: dwiup06z

– Task: L8 mirror

Line Numerical Expression Result

1 92 + 8 100

2 100/2 50

3 50/4 12.5

• Base term set: {b2}, frequency in lottery: 0.77%, frequency in mirror: 0.88%

– Subject ID: i1uphqli

– Task: L25 lottery

Line Numerical Expression Result

1 75/100 0.75

2 0.75 × 30 22.5

– Subject ID: i1uphqli

– Task: G25 mirror

Line Numerical Expression Result

1 75/100 0.75

2 0.75 × 30 22.5
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D Robustness of the Results to Understandings of In-

structions

D.1 Replication with Instructions from Wu (2025) and Healy

(2020)

I conducted the main experiment with a set of instructions that followed heavily from

Oprea’s (2024b), whose validity is currently under debate. In particular, Banki et al. (2025)

and ? argue that Oprea’s (2024b) instructions may be overly complex for the subjects to

understand, which may have led to (1) subjects submitting unresponsive valuations due to

not understanding the instructions; and (2) subjects mistaking mirror tasks for the more

familiar lottery tasks.

In this appendix, I report results from a replication study using an entirely new set

of instructions following ?, who criticized Oprea’s (2024b) instructions and developed new

instructions and comprehension checks to ensure subjects’ understanding of the concepts

of lotteries and mirrors. Since ?’s (?) instructions pertain to binary choice tasks involving

lotteries and mirrors, while my main experiment relies on the Becker-DeGroot-Marschak

(BDM) mechanism, I develop instructions for the BDM mechanism following Healy (2020)

and with only minimal changes. Healy’s (2020) instructions have been widely adopted

by experimental economists to explain the BDM mechanism to lab subjects23. My final

instructions in this replication are a combination of ? and Healy (2020), with the former

providing explanations for the two different task types, and the comprehension checks to

ensure subjects’ understanding of the two task types, and the latter providing explanations

for the BDM mechanism.

The replication was conducted on Prolific in July 2025. A total of 49 subjects completed

the replication. Each subject was paid a participation fee of $7 for completing the experiment.

With a 20% chance, a subject was also paid the outcome of a randomly chosen task. The

median subject spent around 50 minutes on the experiment, and the average total earning from
23See https://scholar.google.com/scholar?cites=2121037054932491512 for a list of experimental studies

that adopted Healy’s (2020) instructions.
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the experiment was $11.23. The instructions for the replication can be found in Appendix H.

Appendix Figure D.1 replicates Figure 3. Out of the four observations in Section 3, two

still hold in the replication: (1) unresponsiveness to changes in probabilities in lottery tasks;

and (2) the calculator increasing the responsiveness. However, two of the observations are

weakened. First, as ? points out, the responsiveness is now higher in mirrors compared

to lotteries after comprehensive subject training and screening, but in the meantime, the

responsiveness in mirror tasks is still far from the complete responsiveness benchmark (1).

Second, gain and loss tasks are no longer symmetric, and gain tasks are significantly more

responsive than loss tasks.
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Figure D.1: Average valuation of each lottery and their deterministic mirror in the replication

Appendix Figure D.2 replicates Figure 4. The two salient observations in the main text

regarding the discriminability and the dispersion of valuations conditional on employing a

group of base terms still hold.
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Figure D.2: Distributions of lottery valuations in the Calc treatment of the replication,
conditional on employing each group of base terms.

Appendix Figure D.3 replicates Figure 5. The fraction of EV-types in the replication

is higher than that in the full sample. The EV-type subjects are still close to complete

responsiveness, but not as responsive as in the main experiment (average responsiveness

= 0.78). The non-EV-type subjects (average responsiveness = -0.02) exhibit even more

extreme unresponsiveness than in the main experiment (0.25). The unresponsiveness is so

extreme that the non-EV-types violate monotonicity on average. The bimodal distribution of

responsiveness is still present.

Appendix Figure D.4 replicates Figure 6. Again, the EV-types (average responsiveness

= 0.48) are more responsive than the non-EV-types (0.07) in the NoCalc treatment. A

comparison between treatments reveals that the EV-types again show significantly higher

responsiveness in the Calc treatment (Appendix Figure D.2 and Appendix Figure D.3).

62



0

5

10

15

20

Avg Resp: 0.5

All subjects

Avg Resp: 0.78

Expected Value (63.3%)

Avg Resp: -0.01

Number (20.4%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

Avg Resp: -0.03

Linear Money (14.3%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Avg Resp: nan

Linear Box (0.0%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Avg Resp: 0.98

Non-linear (2.0%)

Responsiveness in lottery

Nu
m

be
r o

f S
ub

je
ct

s

Figure D.3: Histograms of individual responsiveness in lottery tasks in the Calc treatment
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Figure D.4: Histograms of individual responsiveness in lottery tasks in the NoCalc treatment

63



D.2 Restricting the Sample as Proposed by Banki et al. (2025)

This appendix replicates the main results using only the 49 subjects who answer all four

batches of comprehension questions correctly at their first trial. This sample selection is

proposed by Banki et al. (2025) to address the potential confusion arising from Oprea’s

(2024b), and by extension, my experimental instructions. These subjects who correctly answer

the comprehension questions are argued by Banki et al. (2025) to have better understanding

of the experimental instructions. Notably, 20.4% of the subjects in this subset exhibit

responsiveness smaller than 0.1 in the NoCalc treatment, which is more comparable to (but

still higher than) the figures reported by most papers in the previous literature (see the end

of Section 5.2).

Appendix Figure D.5 replicates Figure 3. The four observations in Section 3 still hold in

this subsample of subjects.
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Figure D.5: Average valuation of each lottery and their deterministic mirror, only including
the 49 subjects who answer all four batches of comprehension questions correctly at their
first trial.

Appendix Figure D.6 replicates Figure 4. The two salient observations in the main text

64



regarding the discriminability and the dispersion of valuations conditional on employing a

group of base terms still hold.
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Figure D.6: Distributions of lottery valuations in the Calc treatment, conditional on employing
each group of base terms, only including the 49 subjects who answer all four batches of
comprehension questions correctly at their first trial.

Appendix Figure D.7 replicates Figure 5. The fraction of EV-types in the restricted

sample is higher than that in the full sample. The EV-type subjects are still close to complete

responsiveness (average responsiveness = 0.86). However, the non-EV-type subjects (average

responsiveness = 0.33) are more responsive than in the full sample (0.25). Specifically,

there are fewer non-EV-type subjects who exhibit extreme unresponsiveness in their lottery

valuations. As a result, the bimodal distribution of responsiveness in the full sample has been

replaced by the unimodal distribution in the restricted sample.

Appendix Figure D.8 replicates Figure 6. Again, the EV-types are more responsive than

the non-EV-types as a whole in the NoCalc treatment, though the difference is a little bit

smaller than when using the full sample, and the non-linear-types are a bit more responsive

than the EV-types in the NoCalc treatment. A comparison between treatments reveals that

the EV-types again show significantly higher responsiveness in the Calc treatment (Appendix

Figure D.6 and Appendix Figure D.7).

65



0

5

10

15

20

Avg Resp: 0.56

All subjects

Avg Resp: 0.86

Expected Value (42.9%)

Avg Resp: 0.36

Number (30.6%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

Avg Resp: 0.22

Linear Money (18.4%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Avg Resp: 1.05

Linear Box (4.1%)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Avg Resp: -0.15

Non-linear (4.1%)

Responsiveness in lottery

Nu
m

be
r o

f S
ub

je
ct

s

Figure D.7: Histograms of individual responsiveness in lottery tasks in the Calc treatment,
only including the 49 subjects who answer all four batches of comprehension questions
correctly at their first trial.
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Figure D.8: Histograms of individual responsiveness in lottery tasks in the NoCalc treatment,
only including the 49 subjects who answer all four batches of comprehension questions
correctly at their first trial.

Does the weakening of the bimodality of responsiveness distribution invalidate the de-

composition exercise in Section 6.1, where I show that the majority of the aggregate unre-

sponsiveness should be attributed to the very responsive and the extremely unresponsive

subjects, but not the moderately responsive subjects? The short answer is no. I replicate the
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exercise decomposing the aggregate unresponsiveness to the contributions of each subset of

subjects in Section 6.1, and find that very responsive subjects (r > 0.9 in the Calc treatment)

contribute to 25.0% of the aggregate unresponsiveness in the NoCalc treatment, the extremely

unresponsive (r < 0.1 in the Calc treatment) contribute to 42.1%, and the rest contribute

32.9%. The numbers are broadly comparable to those in Section 6.1, and the contribution of

the moderately responsive subjects is only slightly higher than in the full sample.
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E Reconciliation and Survey

E.1 Reconciliation

After the Calc treatment, all subjects enter the reconciliation stage, whose design follows

Nielsen and Rehbeck (2022). Specifically, the subject is presented with a subset of all

inconsistent valuations they submitted, and is given a chance to revise either of the choices

to make them consistent, or leave the choices as they are. Inconsistent valuations are when a

subject submits different valuations for the same task in the NoCalc and Calc treatment. For

example, a subject may submit a valuation of $10 for the task (G25, Lottery) in the NoCalc

treatment, but instead $6.5 for the same task (G25, Lottery) in the Calc treatment.

In the reconciliation stage, a subject is presented with the task to which they submit

inconsistent valuations, the valuations they submit in both treatments, and the calculator

input recorded in the Calc treatment. I explain to the subject that their valuations are

inconsistent for this task, and the subject is then given a chance to reconcile their inconsistent

valuations by choosing among three options: (1) Selecting the Calc valuation (changing

their valuation in the NoCalc treatment to that in the Calc treatment); (2) Selecting the

NoCalc valuation (changing their valuation in the Calc treatment to that in the NoCalc

treatment); (3) Keep the valuations inconsistent as they are. The subject is not allowed to

change both the valuations in NoCalc and Calc. The order of the three options is randomized

between-subject, but fixed within-subject. The instructions and the subject interface can be

found in Appendix G.24

The reconciliation stage is incentivized – if the task is randomly chosen to determine the

subject’s payment, the outcome of the BDM mechanism will depend on the valuation after

reconciliation.
24Each subject faces at most four reconciliation tasks. If a subject submits three or more inconsistent

valuations in lottery tasks, they will reconcile three randomly chosen inconsistent lottery valuations. Otherwise,
they will reconcile all their inconsistent lottery valuations. The rest of the reconciliation tasks involve
inconsistent mirror valuations.
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type Calc NoCalc Keep Inconsistent

expected value 55% 17% 28%

number 38% 29% 33%

linear money 44% 20% 35%

linear box 27% 30% 43%

non-linear 57% 19% 24%

Table E.1: Percentages of inconsistent valuations revised and direction of reconciliation for
lottery tasks

Appendix Table E.1 shows the choices of whether to reconcile and the direction of

reconciliation, by subject type (defined in Section 5.2) and for lottery tasks. The EV-type

subjects select their Calc valuations in 55% of reconciliation tasks, while they only select their

NoCalc valuations in 17% of tasks. I interpret this pattern as showing the responsive and

near risk-neutral valuations submitted by the EV-type subjects in the Calc treatment better

reflect their genuine risk attitudes than the moderately unresponsive and prospect theoretic

valuations they submit in the NoCalc treatment. Appendix Figure E.1 further corroborates

this interpretation by showing the CDF of the selected and unselected valuations by lottery

task for the EV-type subjects, conditional on a reconciliation (i.e., not keeping valuations

inconsistent as they are). The selected valuations have larger mass around the expected

values than the unselected valuations.

As for the non-EV types, the number-type subjects show a much smaller gap between the

two different directions of reconciliation. This should be expected since many number-type

subjects do not perform any calculation in the Calc treatment and directly submit a number,

which makes Calc similar to NoCalc. The linear money and non-linear types select their Calc

valuations much more often than their NoCalc valuations, while the linear box type select

their Calc and NoCalc valuations at similar frequencies.
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Figure E.1: CDF of selected and unselected valuations for EV-type subjects. The expected
value of each lottery is marked with the red vertical line.

E.2 Survey

After the main tasks and the reconciliation stage, I included two additional questions testing

subjects’ basic understanding of lotteries. No calculator is provided for either question. In

the first question (referred to as EV ), I show subjects 100 boxes, 30 of which contain $20, and

the remaining $0. The question asks subjects for the average amount of money in these 100

boxes. With elementary knowledge of arithmetic and some attentiveness, a subject can easily

tell that the answer should be $6 without the need to incur much implementation costs. The

EV question is unincentivized. The second question (referred to as FOSD) is a choice task

where the subject needs to choose among four mirrors. The mirrors are designed such that

one of them apparently dominates the other three by having both (weakly) higher positive

money amounts, and more boxes containing a positive amount of money. For a subject who

understands the basics of the payment rule, the choice should be obvious after comparing the

primitives of the sets of boxes and without the need to perform any calculations. The FOSD

question is incentivized, and the mirror a subject chooses will be paid out with certainty.
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The specific questions can be found in Appendix G.

type %EV %FOSD

expected value 96.1% 93.5%

linear box 60.0% 90.0%

linear money 58.8% 88.2%

nonlinear 42.9% 100.0%

number 71.6% 81.1%

Table E.2: Fraction of subjects who correctly answer each question

Appendix Table E.2 shows the fraction of subjects who correctly answer each question,

by subject type. The vast majority of EV-type subjects correctly answer the EV question,

while many non-EV-type subjects make mistakes. Appendix Table E.3 shows the average

responsiveness for subjects who answer the EV question correctly and incorrectly, respectively,

conditional on type. Generally speaking, responsiveness is higher in subjects who correctly

answer the EV question, even conditional on type, except for the nonlinear types. In the

meantime, for most non-EV types (except for linear box), the responsiveness is still quite low

even conditional on correctly answering the EV question.

type %(ev=6) resp|ev=6 resp|ev ̸= 6

expected value 0.96 0.85 0.86

number 0.72 0.30 0.13

linear money 0.59 0.28 0.08

linear box 0.60 0.84 0.24

nonlinear 0.43 -0.20 0.04

Table E.3: Average responsiveness in lottery tasks in the Calc treatment, conditional on type
and their correctness in the EV question

From Appendix Table E.2, it is also clear that the vast majority of subjects answer the

FOSD question correctly, although the FOSD question is incentivized and thus cannot be

directly compared with the unincentivized EV question.
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F Mathematical Expressions and Algorithms
This section first introduces a tree structure of mathematical expressions. Then, it explains

the algorithm with which I recover the symbolic expressions, and the algorithm constructing

the base terms. I implement the tree structure and the algorithm using the open-source

package sympy in Python.

F.1 Mathematical Expressions as Trees

A mathematical expression can be represented as an expression tree. The tree has a few

features:

• Leaf nodes represent operands (numbers or symbols).

• Non-leaf nodes represent operators (such as +, ×, or Power).

• Each non-leaf node generates a subtree, representing a sub-expression.

• Both + and × are defined as n-ary operators (as opposed to binary operators), meaning

they can take any finite number of arguments.

• The operators − and / are represented in the tree using +, ×, and Power. For example,

a − b is represented as a + (−1 × b), and a/b is represented as a × Power(b, −1).

• The parent-child structure of the tree represents the order of operators. A parent

operator is evaluated later than its children.

As an example, Appendix Figure F.1 shows the tree representation of the expression

5 × 4 + 3 − 1. This representation preserves the order of operations because + is a parent

node of the ×. For more information, I refer the Reader to the sympy documentation.
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+

×

5 4

3 −1

Figure F.1: The expression tree representing 5 × 4 + 3 − 1

For my purpose, one of the most important features of sympy’s implementation of this

expression tree is that any subtree with root operator + or × will automatically “flatten” itself

to the shallowest subtree possible. For example, an alternative (and illegal) expression tree

representing the expression 5 × 4 + 3 − 1 is shown in Appendix Figure F.2. Since the operator

+ is allowed to be n-ary (as opposed to binary), the right subtree will be automatically

flattened to form the shallower tree in Appendix Figure F.1. For more information, see here

for + and here for ×.

+

×

5 4

+

3 −1

Figure F.2: An unflattened expression tree representing 5 × 4 + 3 − 1

F.2 Recovering Symbolic Expressions

I denote each calculator input as its sequence of calculator lines L = (ln)n, where ln represents

the numerical expression (represented as an expression tree) in line n ∈ {1, . . . , n̄}. I also

use rn to denote the numerical result from evaluating the numerical expression ln. Let

P = {(xn, vn)}n denote the set of task primitives that the algorithm matches against, where

xn represents a symbol or a symbolic sub-expression, and vn represents its corresponding

numerical value.
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When implementing the algorithm, the following symbolic primitives are being matched:

{b1, b2, m1, m2, b1/100, b2/100, m1/100, b1 × m1, b1 × m1/100}.

The set of primitives is expanded beyond {b1, b2, m1, m2} to include common calculation

shortcuts that subjects may use. For example, in G75, the primitive set includes (b1/100, 0.75)

to capture the possibility that a subject divides the number of boxes by 100 implicitly in

their mind before they use the result of this mental calculation directly in the calculator.

Having defined the necessary notations, I now describe the matching algorithm that

recovers the symbolic expression from numerical expressions. Starting with the first line

l1, the algorithm iterates through all its leaf nodes (the numbers in the expression). If a

number in a leaf node matches some vn, the node’s content is replaced with the corresponding

symbolic sub-expression xn. Any leaf node with a number that does not match any primitive

remains as the same node. In this way, the algorithm constructs the symbolic expression for

the first line, s1.

Since the calculations made in a line n > 1 may build upon previous results, the algorithm

must iteratively incorporate these intermediate calculations. Therefore, for each subsequent

line n > 1, the algorithm expands its matching set to Mn = (∪i<n(si, ri)) ∪ P , which includes

both the original primitives and all previous line results. Specifically, ∪i<n(si, ri) contains

the pairs of symbolic expressions and their computed results from all previous lines i < n.

When processing line n, for any leaf node with a number that matches a previous result ri, its

content is replaced with the corresponding symbolic expression si. In the meantime, matches

with primitive values vk continue to be replaced with xk. This process yields the symbolic

expression sn for each line n.

Through this iterative construction, the algorithm generates a sequence of symbolic

expressions S = (sn)n from the numerical expressions L.

F.3 Terms and Base Terms

For any symbolic expression l, if its root node is the operator +, its terms are all the

second-level subtrees (whose roots are the immediate child nodes of the root node) of the

symbolic expression. Otherwise, the symbolic expression has only one term: the symbolic
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expression itself. The flattening property of the expression trees ensures that all base terms

have roots (the upper-level operand) other than the operator +. For example, b1 + b2 cannot

be a term, while b1 and b1 × m1 are permitted. I implement the algorithm backing out terms

via the function as_ordered_terms (see here) in sympy.

Then, for each term t, I first find all its factors. If the root node of a term is ×, the

factors are all the second-level subtrees. Otherwise, the only factor of this term is the term

itself. See the documentation of as_ordered_factors for more information. Finally, I drop

all factors that are a single number (as opposed to symbols, or sub-expressions) from the

term to generate its corresponding base term. If all factors are number factors (for example:

(1) 4; (2) 4 × 2, as opposed to symbols or sub-expressions, the base term is defined as C.

The concept of terms, and by extension base terms, runs into an indeterminacy problem

with syntactically different but mathematically equivalent expressions – for example, the

mathematically equivalent expressions b1 ×m1/100+b2 ×m2/100 and (b1 ×m1 +b2 ×m2)/100

lead to different terms and in turn base terms. To address this problem, I first expand all the

products in all expressions by applying the distributive law of multiplication (a × (b + c) =

a×b+a×c), wherever applicable. This way, I transform the original symbolic expression into

its distributed form expression. Using distributed form expressions solves the aforementioned

indeterminacy problem and generates the same set of base terms ({b1 × m1, b2 × m2}) for

b1 × m1/100 + b2 × m2/100 and (b1 × m1 + b2 × m2)/100.
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G Experimental Instructions of the Main Experiment
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If the next tasks are lottery tasks, the following instructions appear.

Instead, if the next tasks are mirror tasks, the following instructions appear.
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Four comprehension questions are asked on the same page as the instructions over the

payoff rules of lotteries. The subject needs to simultaneously answer all four questions

correctly to proceed. The answers to the first three questions differ across lottery and mirror.
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After introducing the payout rules of lottery (or mirror), instructions for the BDM

mechanism is shown. First, all subjects are shown the instructions for the gain tasks, eliciting

the willingness to pay.
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Then, all subjects are shown the instructions for the gain tasks, eliciting the willingness

to prevent (negative of the valuation).
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The last part of instructions before the main tasks.

Experimental interface in the NoCalc treatment:
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After completing the first block of 9 tasks with the first payment rule, the subjects are

notified with a change of payment rule.

The same set of 4 comprehension questions are asked again.
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After the NoCalc treatment, the subjects enter the Calc treatment and are shown the

next instructions.
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Experimental interface in the Calc treatment, before the subject performs any calculation:

Experimental interface in the Calc treatment, after the subject performs some calculations

and clicked Fill:

The interface in the reconciliation tasks (data analyzed in Appendix E).
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The order of the three options is randomized across subjects, but fixed for the same

subjects across reconciliation tasks.
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After the reconciliation task, the subject is asked to perform a choice task between four

mirrors (data analyzed in Appendix E).

Finally, the subject is asked a simple question testing their understanding of the concept

of averages (data analyzed in Appendix E). The question is unincentivized, and the page

title “Incentivized Survey” is a typo.
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H Experimental Instructions for the Replication Adopt-

ing Instructions from Wu (2025)
The instructions differ from those in Appendix G in four aspects: (1) How the lotteries and

mirrors are described; (2) How to ensure subjects’ comprehension of the different payment

rules in lotteries and mirrors; (3) How to screen out subjects when they fail comprehension

checks; and (4) How the BDM mechanism is described to subjects.

At the beginning, the subjects are introduced with the first payment rule. The screenshot

below shows the description of the payment rules for lottery and mirror, respectively.
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The subjects are then shown 10 randomly simulated outcomes from the current payment

rule, using 3 example sets of boxes which all involve an non-zero outcome of $100. One

example set of boxes are shown in the screenshot, under the lottery payment rule.
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Next, the subjects go through the comprehension check. A total of 5 questions are asked,

and if the subject answers 4 or fewer correctly, they will be screened out of the experiment.

The questions differ in the set of boxes shown, which all involve an non-zero outcome of $100.

The correct answer of the question above is 50 for mirror payment rule, and 0 and 100 for

lottery payment rule.
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Next, the subject gets into the descriptions of the BDM mechanism, adopted from Healy

(2020) with minimal changes.

The subjects are also shown the instructions of the BDM mechanism for tasks involving

losses.
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Then the subjects enter the NoCalc treatment with the interface below.
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After completing the first block of 9 tasks with the first payment rule, the subjects are

notified with a change of payment rule.

Then, the subjects again go through the 3 simulated outcomes and the 5 comprehension

questions. Again, if the subjects answer 4 or fewer comprehension questions correctly, they

will be screened out of the experiment and will be paid $2.50 for their time.

If they pass the second set of comprehension questions, they will enter the second block

of the NoCalc treatment.
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After finishing the NoCalc treatment, the subjects enter the Calc treatment and are shown

the calculator instructions shown in Appendix G.

Then, the subjects will again be notified the change of payment rule that goes back to

their first block in the NoCalc treatment. The 3 simulated outcomes are shown again, but

there is no comprehension questions and subject screening in the Calc treatment.

The remaining instructions are exactly the same as Appendix G, except for the correction

of the typo in the last screenshot of Appendix G.
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